pub trait Estimate<T: State>where
Self: Clone + PartialEq + Sized + Display,
DefaultAllocator: Allocator<<T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<<T as State>::VecLength>,{
Show 14 methods
// Required methods
fn zeros(state: T) -> Self;
fn state_deviation(&self) -> OVector<f64, <T as State>::Size>;
fn nominal_state(&self) -> T;
fn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>;
fn predicted_covar(
&self,
) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>;
fn set_state_deviation(
&mut self,
new_state: OVector<f64, <T as State>::Size>,
);
fn set_covar(
&mut self,
new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
);
fn predicted(&self) -> bool;
fn stm(&self) -> &OMatrix<f64, <T as State>::Size, <T as State>::Size>;
// Provided methods
fn epoch(&self) -> Epoch { ... }
fn set_epoch(&mut self, dt: Epoch) { ... }
fn state(&self) -> T { ... }
fn within_sigma(&self, sigma: f64) -> bool { ... }
fn within_3sigma(&self) -> bool { ... }
}
Expand description
Stores an Estimate, as the result of a time_update
or measurement_update
.
Required Methods§
Sourcefn zeros(state: T) -> Self
fn zeros(state: T) -> Self
An empty estimate. This is useful if wanting to store an estimate outside the scope of a filtering loop.
Sourcefn state_deviation(&self) -> OVector<f64, <T as State>::Size>
fn state_deviation(&self) -> OVector<f64, <T as State>::Size>
The state deviation as computed by the filter.
Sourcefn nominal_state(&self) -> T
fn nominal_state(&self) -> T
The nominal state as reported by the filter dynamics
Sourcefn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
fn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
The Covariance of this estimate. Will return the predicted covariance if this is a time update/prediction.
Sourcefn predicted_covar(
&self,
) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
fn predicted_covar( &self, ) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
The predicted covariance of this estimate from the time update
Sourcefn set_state_deviation(&mut self, new_state: OVector<f64, <T as State>::Size>)
fn set_state_deviation(&mut self, new_state: OVector<f64, <T as State>::Size>)
Sets the state deviation.
Sourcefn set_covar(
&mut self,
new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
)
fn set_covar( &mut self, new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>, )
Sets the Covariance of this estimate
Provided Methods§
Sourcefn epoch(&self) -> Epoch
fn epoch(&self) -> Epoch
Epoch of this Estimate
Examples found in repository?
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// ====================== //
// === ALMANAC SET UP === //
// ====================== //
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's MetaAlmanac.
let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
.iter()
.collect();
let meta = data_folder.join("lro-dynamics.dhall");
// Load this ephem in the general Almanac we're using for this analysis.
let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
.map_err(Box::new)?
.process(true)
.map_err(Box::new)?;
let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
moon_pc.mu_km3_s2 = 4902.74987;
almanac.planetary_data.set_by_id(MOON, moon_pc)?;
let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
earth_pc.mu_km3_s2 = 398600.436;
almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
// Save this new kernel for reuse.
// In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
almanac
.planetary_data
.save_as(&data_folder.join("lro-specific.pca"), true)?;
// Lock the almanac (an Arc is a read only structure).
let almanac = Arc::new(almanac);
// Orbit determination requires a Trajectory structure, which can be saved as parquet file.
// In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
// To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
// Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
let lro_frame = Frame::from_ephem_j2000(-85);
// To build the trajectory we need to provide a spacecraft template.
let sc_template = Spacecraft::builder()
.dry_mass_kg(1018.0) // Launch masses
.fuel_mass_kg(900.0)
.srp(SrpConfig {
// SRP configuration is arbitrary, but we will be estimating it anyway.
area_m2: 3.9 * 2.7,
cr: 0.96,
})
.orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
.build();
// Now we can build the trajectory from the BSP file.
// We'll arbitrarily set the tracking arc to 48 hours with a one minute time step.
let traj_as_flown = Traj::from_bsp(
lro_frame,
MOON_J2000,
almanac.clone(),
sc_template,
5.seconds(),
Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
Aberration::LT,
Some("LRO".to_string()),
)?;
println!("{traj_as_flown}");
// ====================== //
// === MODEL MATCHING === //
// ====================== //
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
// The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the GRAIL JGGRX model.
let mut jggrx_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jggrx_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Moon principal axes frame.
let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
// let moon_pa_frame = IAU_MOON_FRAME;
let sph_harmonics = Harmonics::from_stor(
almanac.frame_from_uid(moon_pa_frame)?,
HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(sph_harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
// Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Now we can build the propagator.
let setup = Propagator::default_dp78(dynamics.clone());
// For reference, let's build the trajectory with Nyx's models from that LRO state.
let (sim_final, traj_as_sim) = setup
.with(*traj_as_flown.first(), almanac.clone())
.until_epoch_with_traj(traj_as_flown.last().epoch())?;
println!("SIM INIT: {:x}", traj_as_flown.first());
println!("SIM FINAL: {sim_final:x}");
// Compute RIC difference between SIM and LRO ephem
let sim_lro_delta = sim_final
.orbit
.ric_difference(&traj_as_flown.last().orbit)?;
println!("{traj_as_sim}");
println!(
"SIM v LRO - RIC Position (m): {:.3}",
sim_lro_delta.radius_km * 1e3
);
println!(
"SIM v LRO - RIC Velocity (m/s): {:.3}",
sim_lro_delta.velocity_km_s * 1e3
);
traj_as_sim.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_sim_truth_error.parquet",
ExportCfg::default(),
)?;
// ==================== //
// === OD SIMULATOR === //
// ==================== //
// After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
// and the truth LRO state.
// Therefore, we will actually run an estimation from a dispersed LRO state.
// The sc_seed is the true LRO state from the BSP.
let sc_seed = *traj_as_flown.first();
// Load the Deep Space Network ground stations.
// Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
let ground_station_file: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"dsn-network.yaml",
]
.iter()
.collect();
let devices = GroundStation::load_named(ground_station_file)?;
// Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
// Nyx can build a tracking schedule for you based on the first station with access.
let trkconfg_yaml: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"tracking-cfg.yaml",
]
.iter()
.collect();
let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
// Build the tracking arc simulation to generate a "standard measurement".
let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
devices.clone(),
traj_as_flown.clone(),
configs,
)?;
trk.build_schedule(almanac.clone())?;
let arc = trk.generate_measurements(almanac.clone())?;
// Save the simulated tracking data
arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
// We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
println!("{arc}");
// Now that we have simulated measurements, we'll run the orbit determination.
// ===================== //
// === OD ESTIMATION === //
// ===================== //
let sc = SpacecraftUncertainty::builder()
.nominal(sc_seed)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.5)
.z_km(0.5)
.vx_km_s(5e-3)
.vy_km_s(5e-3)
.vz_km_s(5e-3)
.build();
// Build the filter initial estimate, which we will reuse in the filter.
let initial_estimate = sc.to_estimate()?;
println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
let kf = KF::new(
// Increase the initial covariance to account for larger deviation.
initial_estimate,
// Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
SNC3::from_diagonal(10 * Unit::Minute, &[1e-11, 1e-11, 1e-11]),
);
// We'll set up the OD process to reject measurements whose residuals are mover than 4 sigmas away from what we expect.
let mut odp = SpacecraftODProcess::ckf(
setup.with(initial_estimate.state().with_stm(), almanac.clone()),
kf,
devices,
Some(ResidRejectCrit::default()),
almanac.clone(),
);
odp.process_arc(&arc)?;
let ric_err = traj_as_flown
.at(odp.estimates.last().unwrap().epoch())?
.orbit
.ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
println!("== RIC at end ==");
println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
// In our case, we have the truth trajectory from NASA.
// So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
// Export the OD trajectory first.
let od_trajectory = odp.to_traj()?;
// Build the RIC difference.
od_trajectory.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_od_truth_error.parquet",
ExportCfg::default(),
)?;
Ok(())
}
fn set_epoch(&mut self, dt: Epoch)
Sourcefn state(&self) -> T
fn state(&self) -> T
The estimated state
Examples found in repository?
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// ====================== //
// === ALMANAC SET UP === //
// ====================== //
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's MetaAlmanac.
let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
.iter()
.collect();
let meta = data_folder.join("lro-dynamics.dhall");
// Load this ephem in the general Almanac we're using for this analysis.
let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
.map_err(Box::new)?
.process(true)
.map_err(Box::new)?;
let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
moon_pc.mu_km3_s2 = 4902.74987;
almanac.planetary_data.set_by_id(MOON, moon_pc)?;
let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
earth_pc.mu_km3_s2 = 398600.436;
almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
// Save this new kernel for reuse.
// In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
almanac
.planetary_data
.save_as(&data_folder.join("lro-specific.pca"), true)?;
// Lock the almanac (an Arc is a read only structure).
let almanac = Arc::new(almanac);
// Orbit determination requires a Trajectory structure, which can be saved as parquet file.
// In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
// To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
// Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
let lro_frame = Frame::from_ephem_j2000(-85);
// To build the trajectory we need to provide a spacecraft template.
let sc_template = Spacecraft::builder()
.dry_mass_kg(1018.0) // Launch masses
.fuel_mass_kg(900.0)
.srp(SrpConfig {
// SRP configuration is arbitrary, but we will be estimating it anyway.
area_m2: 3.9 * 2.7,
cr: 0.96,
})
.orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
.build();
// Now we can build the trajectory from the BSP file.
// We'll arbitrarily set the tracking arc to 48 hours with a one minute time step.
let traj_as_flown = Traj::from_bsp(
lro_frame,
MOON_J2000,
almanac.clone(),
sc_template,
5.seconds(),
Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
Aberration::LT,
Some("LRO".to_string()),
)?;
println!("{traj_as_flown}");
// ====================== //
// === MODEL MATCHING === //
// ====================== //
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
// The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the GRAIL JGGRX model.
let mut jggrx_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jggrx_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Moon principal axes frame.
let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
// let moon_pa_frame = IAU_MOON_FRAME;
let sph_harmonics = Harmonics::from_stor(
almanac.frame_from_uid(moon_pa_frame)?,
HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(sph_harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
// Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Now we can build the propagator.
let setup = Propagator::default_dp78(dynamics.clone());
// For reference, let's build the trajectory with Nyx's models from that LRO state.
let (sim_final, traj_as_sim) = setup
.with(*traj_as_flown.first(), almanac.clone())
.until_epoch_with_traj(traj_as_flown.last().epoch())?;
println!("SIM INIT: {:x}", traj_as_flown.first());
println!("SIM FINAL: {sim_final:x}");
// Compute RIC difference between SIM and LRO ephem
let sim_lro_delta = sim_final
.orbit
.ric_difference(&traj_as_flown.last().orbit)?;
println!("{traj_as_sim}");
println!(
"SIM v LRO - RIC Position (m): {:.3}",
sim_lro_delta.radius_km * 1e3
);
println!(
"SIM v LRO - RIC Velocity (m/s): {:.3}",
sim_lro_delta.velocity_km_s * 1e3
);
traj_as_sim.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_sim_truth_error.parquet",
ExportCfg::default(),
)?;
// ==================== //
// === OD SIMULATOR === //
// ==================== //
// After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
// and the truth LRO state.
// Therefore, we will actually run an estimation from a dispersed LRO state.
// The sc_seed is the true LRO state from the BSP.
let sc_seed = *traj_as_flown.first();
// Load the Deep Space Network ground stations.
// Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
let ground_station_file: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"dsn-network.yaml",
]
.iter()
.collect();
let devices = GroundStation::load_named(ground_station_file)?;
// Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
// Nyx can build a tracking schedule for you based on the first station with access.
let trkconfg_yaml: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"tracking-cfg.yaml",
]
.iter()
.collect();
let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
// Build the tracking arc simulation to generate a "standard measurement".
let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
devices.clone(),
traj_as_flown.clone(),
configs,
)?;
trk.build_schedule(almanac.clone())?;
let arc = trk.generate_measurements(almanac.clone())?;
// Save the simulated tracking data
arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
// We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
println!("{arc}");
// Now that we have simulated measurements, we'll run the orbit determination.
// ===================== //
// === OD ESTIMATION === //
// ===================== //
let sc = SpacecraftUncertainty::builder()
.nominal(sc_seed)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.5)
.z_km(0.5)
.vx_km_s(5e-3)
.vy_km_s(5e-3)
.vz_km_s(5e-3)
.build();
// Build the filter initial estimate, which we will reuse in the filter.
let initial_estimate = sc.to_estimate()?;
println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
let kf = KF::new(
// Increase the initial covariance to account for larger deviation.
initial_estimate,
// Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
SNC3::from_diagonal(10 * Unit::Minute, &[1e-11, 1e-11, 1e-11]),
);
// We'll set up the OD process to reject measurements whose residuals are mover than 4 sigmas away from what we expect.
let mut odp = SpacecraftODProcess::ckf(
setup.with(initial_estimate.state().with_stm(), almanac.clone()),
kf,
devices,
Some(ResidRejectCrit::default()),
almanac.clone(),
);
odp.process_arc(&arc)?;
let ric_err = traj_as_flown
.at(odp.estimates.last().unwrap().epoch())?
.orbit
.ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
println!("== RIC at end ==");
println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
// In our case, we have the truth trajectory from NASA.
// So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
// Export the OD trajectory first.
let od_trajectory = odp.to_traj()?;
// Build the RIC difference.
od_trajectory.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_od_truth_error.parquet",
ExportCfg::default(),
)?;
Ok(())
}
Sourcefn within_sigma(&self, sigma: f64) -> bool
fn within_sigma(&self, sigma: f64) -> bool
Returns whether this estimate is within some bound The 68-95-99.7 rule is a good way to assess whether the filter is operating normally
Sourcefn within_3sigma(&self) -> bool
fn within_3sigma(&self) -> bool
Returns whether this estimate is within 3 sigma, which represent 99.7% for a Normal distribution
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.