nyx_space/utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::cosmic::Orbit;
use crate::linalg::{
allocator::Allocator, DefaultAllocator, DimName, Matrix3, OVector, Vector3, Vector6,
};
use nalgebra::Complex;
/// Returns the skew-symmetric matrix (also known as the tilde matrix)
/// corresponding to the provided 3D vector.
///
/// The skew-symmetric matrix of a vector `v` is defined as:
///
/// ```plaintext
/// 0 -v.z v.y
/// v.z 0 -v.x
/// -v.y v.x 0
/// ```
///
/// This matrix has the property that for any vector `w`, the cross product `v x w`
/// can be computed as the matrix product of the skew-symmetric matrix of `v` and `w`.
pub fn tilde_matrix(v: &Vector3<f64>) -> Matrix3<f64> {
Matrix3::new(0.0, -v.z, v.y, v.z, 0.0, -v.x, -v.y, v.x, 0.0)
}
#[test]
fn test_tilde_matrix() {
let vec = Vector3::new(1.0, 2.0, 3.0);
let rslt = Matrix3::new(0.0, -3.0, 2.0, 3.0, 0.0, -1.0, -2.0, 1.0, 0.0);
assert_eq!(tilde_matrix(&vec), rslt);
let v = Vector3::new(1.0, 2.0, 3.0);
let m = tilde_matrix(&v);
assert_eq!(m[(0, 0)], 0.0);
assert_eq!(m[(0, 1)], -v.z);
assert_eq!(m[(0, 2)], v.y);
assert_eq!(m[(1, 0)], v.z);
assert_eq!(m[(1, 1)], 0.0);
assert_eq!(m[(1, 2)], -v.x);
assert_eq!(m[(2, 0)], -v.y);
assert_eq!(m[(2, 1)], v.x);
assert_eq!(m[(2, 2)], 0.0);
}
/// Checks if the provided 3x3 matrix is diagonal.
///
/// A square matrix is considered diagonal if all its off-diagonal elements are zero.
/// This function verifies this property for a given 3x3 matrix.
/// It checks each off-diagonal element of the matrix and returns `false` if any of them
/// is not approximately zero, considering a tolerance defined by `f64::EPSILON`.
///
/// # Arguments
///
/// * `m` - A 3x3 matrix of `f64` elements to be checked.
///
/// # Returns
///
/// * `bool` - Returns `true` if the matrix is diagonal, `false` otherwise.
///
/// # Example
///
/// ```
/// use nyx_space::utils::is_diagonal;
/// use nyx_space::linalg::Matrix3;
///
/// let m = Matrix3::new(1.0, 0.0, 0.0,
/// 0.0, 2.0, 0.0,
/// 0.0, 0.0, 3.0);
/// assert_eq!(is_diagonal(&m), true);
/// ```
///
/// # Note
///
/// This function uses `f64::EPSILON` as the tolerance for checking if an element is approximately zero.
/// This means that elements with absolute value less than `f64::EPSILON` are considered zero.
pub fn is_diagonal(m: &Matrix3<f64>) -> bool {
for i in 0..3 {
for j in 0..3 {
if i != j && m[(i, j)].abs() > f64::EPSILON {
return false;
}
}
}
true
}
/// Checks if the given matrix represents a stable linear system by examining its eigenvalues.
///
/// Stability of a linear system is determined by the properties of its eigenvalues:
/// - If any eigenvalue has a positive real part, the system is unstable.
/// - If the real part of an eigenvalue is zero and the imaginary part is non-zero, the system is oscillatory.
/// - If the real part of an eigenvalue is negative, the system tends towards stability.
/// - If both the real and imaginary parts of an eigenvalue are zero, the system is invariant.
///
/// # Arguments
///
/// `eigenvalues` - A vector of complex numbers representing the eigenvalues of the system.
///
/// # Returns
///
/// `bool` - Returns `true` if the system is stable, `false` otherwise.
///
/// # Example
///
/// ```
/// use nyx_space::utils::are_eigenvalues_stable;
/// use nyx_space::linalg::Vector2;
/// use nalgebra::Complex;
///
/// let eigenvalues = Vector2::new(Complex::new(-1.0, 0.0), Complex::new(0.0, 1.0));
/// assert_eq!(are_eigenvalues_stable(eigenvalues), true);
/// ```
/// # Source
///
/// [Chemical Process Dynamics and Controls (Woolf)](https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs#Summary_of_Eigenvalue_Graphs)
pub fn are_eigenvalues_stable<N: DimName>(eigenvalues: OVector<Complex<f64>, N>) -> bool
where
DefaultAllocator: Allocator<N>,
{
eigenvalues.iter().all(|ev| ev.re <= 0.0)
}
#[cfg(test)]
mod tests {
use super::*;
use nalgebra::{Complex, OVector};
#[test]
fn test_stable_eigenvalues() {
let eigenvalues = OVector::<Complex<f64>, nalgebra::U2>::from_column_slice(&[
Complex::new(-1.0, 0.0),
Complex::new(0.0, 0.0),
]);
assert!(are_eigenvalues_stable(eigenvalues));
}
#[test]
fn test_unstable_eigenvalues() {
let eigenvalues = OVector::<Complex<f64>, nalgebra::U2>::from_column_slice(&[
Complex::new(1.0, 0.0),
Complex::new(0.0, 0.0),
]);
assert!(!are_eigenvalues_stable(eigenvalues));
}
#[test]
fn test_oscillatory_eigenvalues() {
let eigenvalues = OVector::<Complex<f64>, nalgebra::U2>::from_column_slice(&[
Complex::new(0.0, 1.0),
Complex::new(0.0, -1.0),
]);
assert!(are_eigenvalues_stable(eigenvalues));
}
#[test]
fn test_invariant_eigenvalues() {
let eigenvalues =
OVector::<Complex<f64>, nalgebra::U1>::from_column_slice(&[Complex::new(0.0, 0.0)]);
assert!(are_eigenvalues_stable(eigenvalues));
}
}
/// Returns the provided angle bounded between 0.0 and 360.0.
///
/// This function takes an angle (in degrees) and normalizes it to the range [0, 360).
/// If the angle is negative, it will be converted to a positive angle in the equivalent position.
/// For example, an angle of -90 degrees will be converted to 270 degrees.
///
/// # Arguments
///
/// * `angle` - An angle in degrees.
///
pub fn between_0_360(angle: f64) -> f64 {
let mut bounded = angle % 360.0;
if bounded < 0.0 {
bounded += 360.0;
}
bounded
}
/// Returns the provided angle bounded between -180.0 and +180.0
pub fn between_pm_180(angle: f64) -> f64 {
between_pm_x(angle, 180.0)
}
/// Returns the provided angle bounded between -x and +x.
///
/// This function takes an angle (in degrees) and normalizes it to the range [-x, x).
/// If the angle is outside this range, it will be converted to an equivalent angle within this range.
/// For example, if x is 180, an angle of 270 degrees will be converted to -90 degrees.
///
/// # Arguments
///
/// * `angle` - An angle in degrees.
/// * `x` - The boundary for the angle normalization.
pub fn between_pm_x(angle: f64, x: f64) -> f64 {
let mut bounded = angle % (2.0 * x);
if bounded > x {
bounded -= 2.0 * x;
}
if bounded < -x {
bounded += 2.0 * x;
}
bounded
}
/// The Kronecker delta function
pub fn kronecker(a: f64, b: f64) -> f64 {
if (a - b).abs() <= f64::EPSILON {
1.0
} else {
0.0
}
}
/// Returns a rotation matrix for a rotation about the X axis.
///
/// # Arguments
///
/// * `angle_rad` - The angle of rotation in radians.
///
/// # Warning
///
/// This function returns a matrix for a COORDINATE SYSTEM rotation by `angle_rad` radians.
/// When this matrix is applied to a vector, it rotates the vector by `-angle_rad` radians, not `angle_rad` radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
///
/// # Example
///
/// ```
/// use nyx_space::utils::r1;
///
/// let angle_rad = std::f64::consts::PI / 2.0;
/// let rotation_matrix = r1(angle_rad);
/// ```
///
/// # Source
///
/// [NAIF SPICE Toolkit](https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html)
pub fn r1(angle_rad: f64) -> Matrix3<f64> {
let (s, c) = angle_rad.sin_cos();
Matrix3::new(1.0, 0.0, 0.0, 0.0, c, s, 0.0, -s, c)
}
#[test]
fn test_r1() {
let angle = 0.0;
let rotation_matrix = r1(angle);
assert!((rotation_matrix - Matrix3::identity()).abs().max() <= f64::EPSILON);
let angle = std::f64::consts::PI / 2.0;
let rotation_matrix = r1(angle);
let expected_matrix = Matrix3::new(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.0);
assert!((rotation_matrix - expected_matrix).abs().max() <= f64::EPSILON);
let v = Vector3::new(1.0, 0.0, 0.0);
let rotated_v = rotation_matrix * v;
assert!((rotated_v - v).norm() <= f64::EPSILON);
}
/// Returns a rotation matrix for a rotation about the Y axis.
///
/// # Arguments
///
/// * `angle` - The angle of rotation in radians.
///
/// # Warning
///
/// This function returns a matrix for a COORDINATE SYSTEM rotation by `angle_rad` radians.
/// When this matrix is applied to a vector, it rotates the vector by `-angle_rad` radians, not `angle_rad` radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
///
/// # Example
///
/// ```
/// use nyx_space::utils::r2;
///
/// let angle_rad = std::f64::consts::PI / 2.0;
/// let rotation_matrix = r2(angle_rad);
/// ```
///
/// # Source
///
/// [NAIF SPICE Toolkit](https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html)
pub fn r2(angle_rad: f64) -> Matrix3<f64> {
let (s, c) = angle_rad.sin_cos();
Matrix3::new(c, 0.0, -s, 0.0, 1.0, 0.0, s, 0.0, c)
}
#[test]
fn test_r2() {
let angle = 0.0;
let rotation_matrix = r2(angle);
assert!((rotation_matrix - Matrix3::identity()).abs().max() <= f64::EPSILON);
let angle = std::f64::consts::PI / 2.0;
let rotation_matrix = r2(angle);
let expected_matrix = Matrix3::new(0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0);
assert!((rotation_matrix - expected_matrix).abs().max() <= f64::EPSILON);
let v = Vector3::new(0.0, 1.0, 0.0);
let rotated_v = rotation_matrix * v;
assert!((rotated_v - v).norm() <= f64::EPSILON);
}
/// Returns a rotation matrix for a rotation about the Z axis.
///
/// # Arguments
///
/// * `angle_rad` - The angle of rotation in radians.
///
/// # Warning
///
/// This function returns a matrix for a COORDINATE SYSTEM rotation by `angle_rad` radians.
/// When this matrix is applied to a vector, it rotates the vector by `-angle_rad` radians, not `angle_rad` radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
///
/// # Example
///
/// ```
/// use nyx_space::utils::r3;
///
/// let angle_rad = std::f64::consts::PI / 2.0;
/// let rotation_matrix = r3(angle_rad);
/// ```
///
/// # Source
///
/// [NAIF SPICE Toolkit](https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html)
pub fn r3(angle_rad: f64) -> Matrix3<f64> {
let (s, c) = angle_rad.sin_cos();
Matrix3::new(c, s, 0.0, -s, c, 0.0, 0.0, 0.0, 1.0)
}
#[test]
fn test_r3() {
let angle = 0.0;
let rotation_matrix = r3(angle);
assert!((rotation_matrix - Matrix3::identity()).abs().max() <= f64::EPSILON);
let angle = std::f64::consts::PI / 2.0;
let rotation_matrix = r3(angle);
let expected_matrix = Matrix3::new(0.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0);
assert!((rotation_matrix - expected_matrix).abs().max() <= f64::EPSILON);
let v = Vector3::new(0.0, 0.0, 1.0);
let rotated_v = rotation_matrix * v;
assert!((rotated_v - v).norm() <= f64::EPSILON);
}
/// Rotate a vector about a given axis
///
/// # Arguments
///
/// * `v` - A vector to be rotated.
/// * `axis` - The axis around which to rotate the vector.
/// * `theta` - The angle by which to rotate the vector.
///
/// # Returns
///
/// A new vector that is the result of rotating `v` around `axis` by `theta` radians.
pub fn rotv(v: &Vector3<f64>, axis: &Vector3<f64>, theta: f64) -> Vector3<f64> {
let k_hat = axis.normalize();
v.scale(theta.cos())
+ k_hat.cross(v).scale(theta.sin())
+ k_hat.scale(k_hat.dot(v) * (1.0 - theta.cos()))
}
#[test]
fn test_rotv() {
use approx::assert_abs_diff_eq;
let v = Vector3::new(1.0, 0.0, 0.0);
let axis = Vector3::new(0.0, 0.0, 1.0);
let theta = std::f64::consts::PI / 2.0;
let result = rotv(&v, &axis, theta);
assert_abs_diff_eq!(result, Vector3::new(0.0, 1.0, 0.0), epsilon = 1e-7);
}
/// Returns the components of vector a orthogonal to b
///
/// # Arguments
///
/// * `a` - The vector whose orthogonal components are to be calculated.
/// * `b` - The vector to which `a` is to be made orthogonal.
///
/// # Returns
///
/// A new vector that is the orthogonal projection of `a` onto `b`.
pub fn perpv(a: &Vector3<f64>, b: &Vector3<f64>) -> Vector3<f64> {
let big_a = a.amax();
let big_b = b.amax();
if big_a < f64::EPSILON {
Vector3::zeros()
} else if big_b < f64::EPSILON {
*a
} else {
let a_scl = a / big_a;
let b_scl = b / big_b;
let v = projv(&a_scl, &b_scl);
(a_scl - v) * big_a
}
}
#[test]
fn test_perpv() {
assert_eq!(
perpv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(2.0, 0.0, 0.0)),
Vector3::new(0.0, 6.0, 6.0)
);
assert_eq!(
perpv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(-3.0, 0.0, 0.0)),
Vector3::new(0.0, 6.0, 6.0)
);
assert_eq!(
perpv(&Vector3::new(6.0, 6.0, 0.0), &Vector3::new(0.0, 7.0, 0.0)),
Vector3::new(6.0, 0.0, 0.0)
);
assert_eq!(
perpv(&Vector3::new(6.0, 0.0, 0.0), &Vector3::new(0.0, 0.0, 9.0)),
Vector3::new(6.0, 0.0, 0.0)
);
use approx::assert_abs_diff_eq;
let a = Vector3::new(1.0, 1.0, 0.0);
let b = Vector3::new(1.0, 0.0, 0.0);
let result = perpv(&a, &b);
assert_abs_diff_eq!(result, Vector3::new(0.0, 1.0, 0.0), epsilon = 1e-7);
}
/// Returns the projection of a onto b
///
/// # Arguments
///
/// * `a` - The vector to be projected.
/// * `b` - The vector onto which `a` is to be projected.
///
/// # Returns
///
/// * A new vector that is the projection of `a` onto `b`.
pub fn projv(a: &Vector3<f64>, b: &Vector3<f64>) -> Vector3<f64> {
let b_norm_squared = b.norm_squared();
if b_norm_squared.abs() < f64::EPSILON {
Vector3::zeros()
} else {
b.scale(a.dot(b) / b_norm_squared)
}
}
#[test]
fn test_projv() {
assert_eq!(
projv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(2.0, 0.0, 0.0)),
Vector3::new(6.0, 0.0, 0.0)
);
assert_eq!(
projv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(-3.0, 0.0, 0.0)),
Vector3::new(6.0, 0.0, 0.0)
);
assert_eq!(
projv(&Vector3::new(6.0, 6.0, 0.0), &Vector3::new(0.0, 7.0, 0.0)),
Vector3::new(0.0, 6.0, 0.0)
);
assert_eq!(
projv(&Vector3::new(6.0, 0.0, 0.0), &Vector3::new(0.0, 0.0, 9.0)),
Vector3::new(0.0, 0.0, 0.0)
);
use approx::assert_abs_diff_eq;
let a = Vector3::new(1.0, 1.0, 0.0);
let b = Vector3::new(1.0, 0.0, 0.0);
let result = projv(&a, &b);
assert_abs_diff_eq!(result, Vector3::new(1.0, 0.0, 0.0), epsilon = 1e-7);
}
/// Computes the Root Sum Squared (RSS) state errors between two provided vectors.
///
/// # Arguments
///
/// * `prop_err` - A vector representing the propagated error.
/// * `cur_state` - A vector representing the current state.
///
/// # Returns
///
/// A f64 value representing the RSS state error.
pub fn rss_errors<N: DimName>(prop_err: &OVector<f64, N>, cur_state: &OVector<f64, N>) -> f64
where
DefaultAllocator: Allocator<N>,
{
prop_err
.iter()
.zip(cur_state.iter())
.map(|(&x, &y)| (x - y).powi(2))
.sum::<f64>()
.sqrt()
}
#[test]
fn test_rss_errors() {
use nalgebra::U3;
let prop_err = OVector::<f64, U3>::from_iterator([1.0, 2.0, 3.0]);
let cur_state = OVector::<f64, U3>::from_iterator([1.0, 2.0, 3.0]);
assert_eq!(rss_errors(&prop_err, &cur_state), 0.0);
let prop_err = OVector::<f64, U3>::from_iterator([1.0, 2.0, 3.0]);
let cur_state = OVector::<f64, U3>::from_iterator([4.0, 5.0, 6.0]);
assert_eq!(rss_errors(&prop_err, &cur_state), 5.196152422706632);
}
/// Computes the Root Sum Squared (RSS) orbit errors in kilometers and kilometers per second.
///
/// # Arguments
///
/// * `prop_err` - An Orbit instance representing the propagated error.
/// * `cur_state` - An Orbit instance representing the current state.
///
/// # Returns
///
/// A tuple of f64 values representing the RSS orbit errors in radius and velocity.
pub fn rss_orbit_errors(prop_err: &Orbit, cur_state: &Orbit) -> (f64, f64) {
(
rss_errors(&prop_err.radius_km, &cur_state.radius_km),
rss_errors(&prop_err.velocity_km_s, &cur_state.velocity_km_s),
)
}
/// Computes the Root Sum Squared (RSS) state errors in position and in velocity of two orbit vectors [P V].
///
/// # Arguments
///
/// * `prop_err` - A Vector6 instance representing the propagated error.
/// * `cur_state` - A Vector6 instance representing the current state.
///
/// # Returns
///
/// A tuple of f64 values representing the RSS orbit vector errors in radius and velocity.
pub fn rss_orbit_vec_errors(prop_err: &Vector6<f64>, cur_state: &Vector6<f64>) -> (f64, f64) {
let err_radius = (prop_err.fixed_rows::<3>(0) - cur_state.fixed_rows::<3>(0)).norm();
let err_velocity = (prop_err.fixed_rows::<3>(3) - cur_state.fixed_rows::<3>(3)).norm();
(err_radius, err_velocity)
}
/// Normalize a value between -1.0 and 1.0
///
/// # Arguments
///
/// * `x` - The value to be normalized.
/// * `min_x` - The minimum value in the range of `x`.
/// * `max_x` - The maximum value in the range of `x`.
///
/// # Returns
///
/// A normalized value between -1.0 and 1.0.
pub fn normalize(x: f64, min_x: f64, max_x: f64) -> f64 {
2.0 * (x - min_x) / (max_x - min_x) - 1.0
}
#[test]
fn test_normalize() {
let x = 5.0;
let min_x = 0.0;
let max_x = 10.0;
let result = normalize(x, min_x, max_x);
assert_eq!(result, 0.0);
}
/// Denormalize a value between -1.0 and 1.0
///
/// # Arguments
///
/// * `xp` - The value to be denormalized.
/// * `min_x` - The minimum value in the original range.
/// * `max_x` - The maximum value in the original range.
///
/// # Returns
///
/// A denormalized value between `min_x` and `max_x`.
pub fn denormalize(xp: f64, min_x: f64, max_x: f64) -> f64 {
(max_x - min_x) * (xp + 1.0) / 2.0 + min_x
}
#[test]
fn test_denormalize() {
let xp = 0.0;
let min_x = 0.0;
let max_x = 10.0;
let result = denormalize(xp, min_x, max_x);
assert_eq!(result, 5.0);
}
/// Capitalize the first letter of a string
///
/// # Arguments
///
/// `s` - The string to be capitalized.
///
/// # Returns
///
/// A new string with the first letter capitalized.
///
/// # Source
///
/// https://stackoverflow.com/questions/38406793/why-is-capitalizing-the-first-letter-of-a-string-so-convoluted-in-rust
pub fn capitalize(s: &str) -> String {
let mut c = s.chars();
match c.next() {
None => String::new(),
Some(f) => f.to_uppercase().collect::<String>() + c.as_str(),
}
}
#[test]
fn test_capitalize() {
let s = "hello";
let result = capitalize(s);
assert_eq!(result, "Hello");
}
#[macro_export]
macro_rules! pseudo_inverse {
($mat:expr) => {{
use $crate::md::TargetingError;
let (rows, cols) = $mat.shape();
if rows < cols {
match ($mat * $mat.transpose()).try_inverse() {
Some(m1_inv) => Ok($mat.transpose() * m1_inv),
None => Err(TargetingError::SingularJacobian),
}
} else {
match ($mat.transpose() * $mat).try_inverse() {
Some(m2_inv) => Ok(m2_inv * $mat.transpose()),
None => Err(TargetingError::SingularJacobian),
}
}
}};
}
/// Returns the order of mangitude of the provided value
/// ```
/// use nyx_space::utils::mag_order;
/// assert_eq!(mag_order(1000.0), 3);
/// assert_eq!(mag_order(-5000.0), 3);
/// assert_eq!(mag_order(-0.0005), -4);
/// ```
pub fn mag_order(value: f64) -> i32 {
value.abs().log10().floor() as i32
}
/// Returns the unit vector of the moved input vector
pub fn unitize(v: Vector3<f64>) -> Vector3<f64> {
if v.norm() < f64::EPSILON {
v
} else {
v / v.norm()
}
}
/// Converts the input vector V from Cartesian coordinates to spherical coordinates
/// Returns ρ, θ, φ where the range ρ is in the units of the input vector and the angles are in radians
pub fn cartesian_to_spherical(v: &Vector3<f64>) -> (f64, f64, f64) {
if v.norm() < f64::EPSILON {
(0.0, 0.0, 0.0)
} else {
let range_ρ = v.norm();
let θ = v.y.atan2(v.x);
let φ = (v.z / range_ρ).acos();
(range_ρ, θ, φ)
}
}
/// Converts the input vector V from Cartesian coordinates to spherical coordinates
/// Returns ρ, θ, φ where the range ρ is in the units of the input vector and the angles are in radians
pub fn spherical_to_cartesian(range_ρ: f64, θ: f64, φ: f64) -> Vector3<f64> {
if range_ρ < f64::EPSILON {
// Treat a negative range as a zero vector
Vector3::zeros()
} else {
let x = range_ρ * φ.sin() * θ.cos();
let y = range_ρ * φ.sin() * θ.sin();
let z = range_ρ * φ.cos();
Vector3::new(x, y, z)
}
}
#[rustfmt::skip]
#[test]
fn test_diagonality() {
assert!(!is_diagonal(&Matrix3::new(10.0, 0.0, 0.0,
1.0, 5.0, 0.0,
0.0, 0.0, 2.0)),
"lower triangular"
);
assert!(!is_diagonal(&Matrix3::new(10.0, 1.0, 0.0,
1.0, 5.0, 0.0,
0.0, 0.0, 2.0)),
"symmetric but not diag"
);
assert!(!is_diagonal(&Matrix3::new(10.0, 1.0, 0.0,
0.0, 5.0, 0.0,
0.0, 0.0, 2.0)),
"upper triangular"
);
assert!(is_diagonal(&Matrix3::new(10.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 2.0)),
"diagonal with zero diagonal element"
);
assert!(is_diagonal(&Matrix3::new(10.0, 0.0, 0.0,
0.0, 5.0, 0.0,
0.0, 0.0, 2.0)),
"diagonal"
);
}
#[test]
fn test_angle_bounds() {
assert!((between_pm_180(181.0) - -179.0).abs() < f64::EPSILON);
assert!((between_0_360(-179.0) - 181.0).abs() < f64::EPSILON);
}
#[test]
fn test_positive_angle() {
assert_eq!(between_0_360(450.0), 90.0);
assert_eq!(between_pm_x(270.0, 180.0), -90.0);
}
#[test]
fn test_negative_angle() {
assert_eq!(between_0_360(-90.0), 270.0);
assert_eq!(between_pm_x(-270.0, 180.0), 90.0);
}
#[test]
fn test_angle_in_range() {
assert_eq!(between_0_360(180.0), 180.0);
assert_eq!(between_pm_x(90.0, 180.0), 90.0);
}
#[test]
fn test_zero_angle() {
assert_eq!(between_0_360(0.0), 0.0);
assert_eq!(between_pm_x(0.0, 180.0), 0.0);
}
#[test]
fn test_full_circle_angle() {
assert_eq!(between_0_360(360.0), 0.0);
assert_eq!(between_pm_x(360.0, 180.0), 0.0);
}
#[test]
fn test_pseudo_inv() {
use crate::linalg::{DMatrix, SMatrix};
let mut mat = DMatrix::from_element(1, 3, 0.0);
mat[(0, 0)] = -1407.273208782421;
mat[(0, 1)] = -2146.3100013104886;
mat[(0, 2)] = 84.05022886527551;
println!("{}", pseudo_inverse!(&mat).unwrap());
let mut mat = SMatrix::<f64, 1, 3>::zeros();
mat[(0, 0)] = -1407.273208782421;
mat[(0, 1)] = -2146.3100013104886;
mat[(0, 2)] = 84.05022886527551;
println!("{}", pseudo_inverse!(&mat).unwrap());
let mut mat = SMatrix::<f64, 3, 1>::zeros();
mat[(0, 0)] = -1407.273208782421;
mat[(1, 0)] = -2146.3100013104886;
mat[(2, 0)] = 84.05022886527551;
println!("{}", pseudo_inverse!(&mat).unwrap());
// Compare a pseudo inverse with a true inverse
let mat = SMatrix::<f64, 2, 2>::new(3.0, 4.0, -2.0, 1.0);
println!("{}", mat.try_inverse().unwrap());
println!("{}", pseudo_inverse!(&mat).unwrap());
}
#[test]
fn spherical() {
for v in &[
Vector3::<f64>::x(),
Vector3::<f64>::y(),
Vector3::<f64>::z(),
Vector3::<f64>::zeros(),
Vector3::<f64>::new(159.1, 561.2, 756.3),
] {
let (range_ρ, θ, φ) = cartesian_to_spherical(v);
let v_prime = spherical_to_cartesian(range_ρ, θ, φ);
assert!(rss_errors(v, &v_prime) < 1e-12, "{} != {}", v, &v_prime);
}
}