nyx_space/tools/
lambert.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::errors::NyxError;
use crate::linalg::Vector3;
use std::f64::consts::PI;

const TAU: f64 = 2.0 * PI;
const LAMBERT_EPSILON: f64 = 1e-4; // General epsilon
const LAMBERT_EPSILON_TIME: f64 = 1e-4; // Time epsilon
const LAMBERT_EPSILON_RAD: f64 = (5e-5 / 180.0) * PI; // 0.00005 degrees
/// Maximum number of iterations allowed in the Lambert problem solver.
/// This is a safety measure to prevent infinite loops in case a solution cannot be found.
const MAX_ITERATIONS: usize = 1000;

/// Define the transfer kind for a Lambert
pub enum TransferKind {
    Auto,
    ShortWay,
    LongWay,
    NRevs(u8),
}

impl TransferKind {
    /// Calculate the direction multiplier based on the transfer kind.
    ///
    /// # Arguments
    ///
    /// * `r_final` - The final radius vector.
    /// * `r_init` - The initial radius vector.
    ///
    /// # Returns
    ///
    /// * `Result<f64, NyxError>` - The direction multiplier or an error if the transfer kind is not supported.
    fn direction_of_motion(
        self,
        r_final: &Vector3<f64>,
        r_init: &Vector3<f64>,
    ) -> Result<f64, NyxError> {
        match self {
            TransferKind::Auto => {
                let mut dnu = r_final[1].atan2(r_final[0]) - r_init[1].atan2(r_final[1]);
                if dnu > TAU {
                    dnu -= TAU;
                } else if dnu < 0.0 {
                    dnu += TAU;
                }

                if dnu > std::f64::consts::PI {
                    Ok(-1.0)
                } else {
                    Ok(1.0)
                }
            }
            TransferKind::ShortWay => Ok(1.0),
            TransferKind::LongWay => Ok(-1.0),
            _ => Err(NyxError::LambertMultiRevNotSupported),
        }
    }
}

#[derive(Debug)]
pub struct LambertSolution {
    pub v_init: Vector3<f64>,
    pub v_final: Vector3<f64>,
    pub phi: f64,
}

/// Solve the Lambert boundary problem using a standard secant method.
///
/// Given the initial and final radii, a time of flight, and a gravitational parameters, it returns the needed initial and final velocities
/// along with φ which is the square of the difference in eccentric anomaly. Note that the direction of motion
/// is computed directly in this function to simplify the generation of Pork chop plots.
///
/// # Arguments
///
/// * `r_init` - The initial radius vector.
/// * `r_final` - The final radius vector.
/// * `tof` - The time of flight.
/// * `gm` - The gravitational parameter.
/// * `kind` - The kind of transfer (auto, short way, long way, or number of revolutions).
///
/// # Returns
///
/// `Result<LambertSolution, NyxError>` - The solution to the Lambert problem or an error if the problem could not be solved.
pub fn standard(
    r_init: Vector3<f64>,
    r_final: Vector3<f64>,
    tof: f64,
    gm: f64,
    kind: TransferKind,
) -> Result<LambertSolution, NyxError> {
    let r_init_norm = r_init.norm();
    let r_final_norm = r_final.norm();
    let r_norm_product = r_init_norm * r_final_norm;
    let cos_dnu = r_init.dot(&r_final) / r_norm_product;

    let dm = kind.direction_of_motion(&r_final, &r_init)?;

    let nu_init = r_init[1].atan2(r_init[0]);
    let nu_final = r_final[1].atan2(r_final[0]);

    let a = dm * (r_norm_product * (1.0 + cos_dnu)).sqrt();

    if nu_final - nu_init < LAMBERT_EPSILON_RAD && a.abs() < LAMBERT_EPSILON {
        return Err(NyxError::TargetsTooClose);
    }

    let mut phi_upper = 4.0 * PI.powi(2);
    let mut phi_lower = -4.0 * PI.powi(2);
    let mut phi = 0.0;

    let mut c2: f64 = 1.0 / 2.0;
    let mut c3: f64 = 1.0 / 6.0;
    let mut iter: usize = 0;
    let mut cur_tof: f64 = 0.0;
    let mut y = 0.0;

    while (cur_tof - tof).abs() > LAMBERT_EPSILON_TIME {
        if iter > MAX_ITERATIONS {
            return Err(NyxError::MaxIterReached {
                msg: format!("Lambert solver failed after {MAX_ITERATIONS} iterations"),
            });
        }
        iter += 1;

        y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
        if a > 0.0 && y < 0.0 {
            for _ in 0..500 {
                phi += 0.1;
                y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
                if y >= 0.0 {
                    break;
                }
            }
            if y < 0.0 {
                return Err(NyxError::LambertNotReasonablePhi);
            }
        }

        let chi = (y / c2).sqrt();
        cur_tof = (chi.powi(3) * c3 + a * y.sqrt()) / gm.sqrt();

        if cur_tof < tof {
            phi_lower = phi;
        } else {
            phi_upper = phi;
        }

        phi = (phi_upper + phi_lower) / 2.0;

        if phi > LAMBERT_EPSILON {
            let sqrt_phi = phi.sqrt();
            let (s_sphi, c_sphi) = sqrt_phi.sin_cos();
            c2 = (1.0 - c_sphi) / phi;
            c3 = (sqrt_phi - s_sphi) / phi.powi(3).sqrt();
        } else if phi < -LAMBERT_EPSILON {
            let sqrt_phi = (-phi).sqrt();
            c2 = (1.0 - sqrt_phi.cosh()) / phi;
            c3 = (sqrt_phi.sinh() - sqrt_phi) / (-phi).powi(3).sqrt();
        } else {
            c2 = 0.5;
            c3 = 1.0 / 6.0;
        }
    }

    let f = 1.0 - y / r_init_norm;
    let g_dot = 1.0 - y / r_final_norm;
    let g = a * (y / gm).sqrt();

    Ok(LambertSolution {
        v_init: (r_final - f * r_init) / g,
        v_final: (1.0 / g) * (g_dot * r_final - r_init),
        phi,
    })
}

#[test]
fn test_lambert_vallado_shortway() {
    let ri = Vector3::new(15945.34, 0.0, 0.0);
    let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
    let tof_s = 76.0 * 60.0;
    let gm = 3.98600433e5;

    let exp_vi = Vector3::new(2.058913, 2.915965, 0.0);
    let exp_vf = Vector3::new(-3.451565, 0.910315, 0.0);

    let sol = standard(ri, rf, tof_s, gm, TransferKind::ShortWay).unwrap();

    assert!((sol.v_init - exp_vi).norm() < 1e-6);
    assert!((sol.v_final - exp_vf).norm() < 1e-6);
}

#[test]
fn test_lambert_vallado_lonway() {
    let ri = Vector3::new(15945.34, 0.0, 0.0);
    let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
    let tof_s = 76.0 * 60.0;
    let gm = 3.98600433e5;

    let exp_vi = Vector3::new(-3.811158, -2.003854, 0.0);
    let exp_vf = Vector3::new(4.207569, 0.914724, 0.0);

    let sol = standard(ri, rf, tof_s, gm, TransferKind::LongWay).unwrap();

    assert!((sol.v_init - exp_vi).norm() < 1e-6);
    assert!((sol.v_final - exp_vf).norm() < 1e-6);
}