nyx_space/tools/lambert.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::errors::NyxError;
use crate::linalg::Vector3;
use std::f64::consts::PI;
const TAU: f64 = 2.0 * PI;
const LAMBERT_EPSILON: f64 = 1e-4; // General epsilon
const LAMBERT_EPSILON_TIME: f64 = 1e-4; // Time epsilon
const LAMBERT_EPSILON_RAD: f64 = (5e-5 / 180.0) * PI; // 0.00005 degrees
/// Maximum number of iterations allowed in the Lambert problem solver.
/// This is a safety measure to prevent infinite loops in case a solution cannot be found.
const MAX_ITERATIONS: usize = 1000;
/// Define the transfer kind for a Lambert
pub enum TransferKind {
Auto,
ShortWay,
LongWay,
NRevs(u8),
}
impl TransferKind {
/// Calculate the direction multiplier based on the transfer kind.
///
/// # Arguments
///
/// * `r_final` - The final radius vector.
/// * `r_init` - The initial radius vector.
///
/// # Returns
///
/// * `Result<f64, NyxError>` - The direction multiplier or an error if the transfer kind is not supported.
fn direction_of_motion(
self,
r_final: &Vector3<f64>,
r_init: &Vector3<f64>,
) -> Result<f64, NyxError> {
match self {
TransferKind::Auto => {
let mut dnu = r_final[1].atan2(r_final[0]) - r_init[1].atan2(r_final[1]);
if dnu > TAU {
dnu -= TAU;
} else if dnu < 0.0 {
dnu += TAU;
}
if dnu > std::f64::consts::PI {
Ok(-1.0)
} else {
Ok(1.0)
}
}
TransferKind::ShortWay => Ok(1.0),
TransferKind::LongWay => Ok(-1.0),
_ => Err(NyxError::LambertMultiRevNotSupported),
}
}
}
#[derive(Debug)]
pub struct LambertSolution {
pub v_init: Vector3<f64>,
pub v_final: Vector3<f64>,
pub phi: f64,
}
/// Solve the Lambert boundary problem using a standard secant method.
///
/// Given the initial and final radii, a time of flight, and a gravitational parameters, it returns the needed initial and final velocities
/// along with φ which is the square of the difference in eccentric anomaly. Note that the direction of motion
/// is computed directly in this function to simplify the generation of Pork chop plots.
///
/// # Arguments
///
/// * `r_init` - The initial radius vector.
/// * `r_final` - The final radius vector.
/// * `tof` - The time of flight.
/// * `gm` - The gravitational parameter.
/// * `kind` - The kind of transfer (auto, short way, long way, or number of revolutions).
///
/// # Returns
///
/// `Result<LambertSolution, NyxError>` - The solution to the Lambert problem or an error if the problem could not be solved.
pub fn standard(
r_init: Vector3<f64>,
r_final: Vector3<f64>,
tof: f64,
gm: f64,
kind: TransferKind,
) -> Result<LambertSolution, NyxError> {
let r_init_norm = r_init.norm();
let r_final_norm = r_final.norm();
let r_norm_product = r_init_norm * r_final_norm;
let cos_dnu = r_init.dot(&r_final) / r_norm_product;
let dm = kind.direction_of_motion(&r_final, &r_init)?;
let nu_init = r_init[1].atan2(r_init[0]);
let nu_final = r_final[1].atan2(r_final[0]);
let a = dm * (r_norm_product * (1.0 + cos_dnu)).sqrt();
if nu_final - nu_init < LAMBERT_EPSILON_RAD && a.abs() < LAMBERT_EPSILON {
return Err(NyxError::TargetsTooClose);
}
let mut phi_upper = 4.0 * PI.powi(2);
let mut phi_lower = -4.0 * PI.powi(2);
let mut phi = 0.0;
let mut c2: f64 = 1.0 / 2.0;
let mut c3: f64 = 1.0 / 6.0;
let mut iter: usize = 0;
let mut cur_tof: f64 = 0.0;
let mut y = 0.0;
while (cur_tof - tof).abs() > LAMBERT_EPSILON_TIME {
if iter > MAX_ITERATIONS {
return Err(NyxError::MaxIterReached {
msg: format!("Lambert solver failed after {MAX_ITERATIONS} iterations"),
});
}
iter += 1;
y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
if a > 0.0 && y < 0.0 {
for _ in 0..500 {
phi += 0.1;
y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
if y >= 0.0 {
break;
}
}
if y < 0.0 {
return Err(NyxError::LambertNotReasonablePhi);
}
}
let chi = (y / c2).sqrt();
cur_tof = (chi.powi(3) * c3 + a * y.sqrt()) / gm.sqrt();
if cur_tof < tof {
phi_lower = phi;
} else {
phi_upper = phi;
}
phi = (phi_upper + phi_lower) / 2.0;
if phi > LAMBERT_EPSILON {
let sqrt_phi = phi.sqrt();
let (s_sphi, c_sphi) = sqrt_phi.sin_cos();
c2 = (1.0 - c_sphi) / phi;
c3 = (sqrt_phi - s_sphi) / phi.powi(3).sqrt();
} else if phi < -LAMBERT_EPSILON {
let sqrt_phi = (-phi).sqrt();
c2 = (1.0 - sqrt_phi.cosh()) / phi;
c3 = (sqrt_phi.sinh() - sqrt_phi) / (-phi).powi(3).sqrt();
} else {
c2 = 0.5;
c3 = 1.0 / 6.0;
}
}
let f = 1.0 - y / r_init_norm;
let g_dot = 1.0 - y / r_final_norm;
let g = a * (y / gm).sqrt();
Ok(LambertSolution {
v_init: (r_final - f * r_init) / g,
v_final: (1.0 / g) * (g_dot * r_final - r_init),
phi,
})
}
#[test]
fn test_lambert_vallado_shortway() {
let ri = Vector3::new(15945.34, 0.0, 0.0);
let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
let tof_s = 76.0 * 60.0;
let gm = 3.98600433e5;
let exp_vi = Vector3::new(2.058913, 2.915965, 0.0);
let exp_vf = Vector3::new(-3.451565, 0.910315, 0.0);
let sol = standard(ri, rf, tof_s, gm, TransferKind::ShortWay).unwrap();
assert!((sol.v_init - exp_vi).norm() < 1e-6);
assert!((sol.v_final - exp_vf).norm() < 1e-6);
}
#[test]
fn test_lambert_vallado_lonway() {
let ri = Vector3::new(15945.34, 0.0, 0.0);
let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
let tof_s = 76.0 * 60.0;
let gm = 3.98600433e5;
let exp_vi = Vector3::new(-3.811158, -2.003854, 0.0);
let exp_vf = Vector3::new(4.207569, 0.914724, 0.0);
let sol = standard(ri, rf, tof_s, gm, TransferKind::LongWay).unwrap();
assert!((sol.v_init - exp_vi).norm() < 1e-6);
assert!((sol.v_final - exp_vf).norm() < 1e-6);
}