nyx_space/propagators/
instance.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use super::{DynamicsSnafu, IntegrationDetails, PropagationError, Propagator};
use crate::dynamics::{Dynamics, DynamicsAlmanacSnafu};
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, OVector};
use crate::md::trajectory::{Interpolatable, Traj};
use crate::md::EventEvaluator;
use crate::propagators::TrajectoryEventSnafu;
use crate::time::{Duration, Epoch, Unit};
use crate::State;
use anise::almanac::Almanac;
use anise::errors::MathError;
use rayon::iter::ParallelBridge;
use rayon::prelude::ParallelIterator;
use snafu::ResultExt;
use std::f64;
use std::sync::mpsc::{channel, Sender};
use std::sync::Arc;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;

/// A Propagator allows propagating a set of dynamics forward or backward in time.
/// It is an EventTracker, without any event tracking. It includes the options, the integrator
/// details of the previous step, and the set of coefficients used for the monomorphic instance.
pub struct PropInstance<'a, D: Dynamics>
where
    DefaultAllocator: Allocator<<D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::VecLength>,
{
    /// The state of this propagator instance
    pub state: D::StateType,
    /// The propagator setup (kind, stages, etc.)
    pub prop: &'a Propagator<D>,
    /// Stores the details of the previous integration step
    pub details: IntegrationDetails,
    /// Should progress reports be logged
    pub log_progress: bool,
    pub(crate) almanac: Arc<Almanac>,
    pub(crate) step_size: Duration, // Stores the adapted step for the _next_ call
    pub(crate) fixed_step: bool,
    // Allows us to do pre-allocation of the ki vectors
    pub(crate) k: Vec<OVector<f64, <D::StateType as State>::VecLength>>,
}

impl<'a, D: Dynamics> PropInstance<'a, D>
where
    DefaultAllocator: Allocator<<D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::VecLength>,
{
    /// Sets this instance to not log progress
    pub fn quiet(mut self) -> Self {
        self.log_progress = false;
        self
    }

    /// Sets this instance to log progress
    pub fn verbose(mut self) -> Self {
        self.log_progress = true;
        self
    }

    /// Allows setting the step size of the propagator
    pub fn set_step(&mut self, step_size: Duration, fixed: bool) {
        self.step_size = step_size;
        self.fixed_step = fixed;
    }

    #[allow(clippy::erasing_op)]
    fn for_duration_channel_option(
        &mut self,
        duration: Duration,
        maybe_tx_chan: Option<Sender<D::StateType>>,
    ) -> Result<D::StateType, PropagationError> {
        if duration == 0 * Unit::Second {
            return Ok(self.state);
        }
        let stop_time = self.state.epoch() + duration;

        if self.log_progress {
            // Prevent the print spam for orbit determination cases
            info!("Propagating for {} until {}", duration, stop_time);
        }
        // Call `finally` on the current state to set anything up
        self.state = self
            .prop
            .dynamics
            .finally(self.state, self.almanac.clone())
            .context(DynamicsSnafu)?;

        let backprop = duration.is_negative();
        if backprop {
            self.step_size = -self.step_size; // Invert the step size
        }

        // Transform the state if needed
        let mut original_frame = None;
        if let Some(integration_frame) = self.prop.opts.integration_frame {
            if integration_frame != self.state.orbit().frame {
                original_frame = Some(self.state.orbit().frame);
                let mut new_orbit = self
                    .almanac
                    .transform_to(self.state.orbit(), integration_frame, None)
                    .context(DynamicsAlmanacSnafu {
                        action: "transforming state into desired integration frame",
                    })
                    .context(DynamicsSnafu)?;
                // If the integration frame has parameters, we set them here.
                if let Some(mu_km3_s2) = integration_frame.mu_km3_s2 {
                    new_orbit.frame.mu_km3_s2 = Some(mu_km3_s2);
                }
                // If the integration frame has parameters, we set them here.
                if let Some(shape) = integration_frame.shape {
                    new_orbit.frame.shape = Some(shape);
                }
                if self.log_progress {
                    info!("State transformed to the integration frame {integration_frame}");
                }
                self.state.set_orbit(new_orbit);
            }
        }

        #[cfg(not(target_arch = "wasm32"))]
        let tick = Instant::now();
        #[cfg(not(target_arch = "wasm32"))]
        let mut prev_tick = Instant::now();

        loop {
            let epoch = self.state.epoch();
            if (!backprop && epoch + self.step_size > stop_time)
                || (backprop && epoch + self.step_size <= stop_time)
            {
                if stop_time == epoch {
                    // No propagation necessary
                    #[cfg(not(target_arch = "wasm32"))]
                    {
                        if self.log_progress {
                            let tock: Duration = tick.elapsed().into();
                            debug!("Done in {}", tock);
                        }
                    }

                    // Rotate back if needed
                    if let Some(original_frame) = original_frame {
                        let new_orbit = self
                            .almanac
                            .transform_to(self.state.orbit(), original_frame, None)
                            .context(DynamicsAlmanacSnafu {
                                action: "transforming state from desired integration frame",
                            })
                            .context(DynamicsSnafu)?;
                        self.state.set_orbit(new_orbit);
                    }

                    return Ok(self.state);
                }
                // Take one final step of exactly the needed duration until the stop time
                let prev_step_size = self.step_size;
                let prev_step_kind = self.fixed_step;
                self.set_step(stop_time - epoch, true);

                self.single_step()?;

                // Publish to channel if provided
                if let Some(ref chan) = maybe_tx_chan {
                    if let Err(e) = chan.send(self.state) {
                        warn!("{} when sending on channel", e)
                    }
                }

                // Restore the step size for subsequent calls
                self.set_step(prev_step_size, prev_step_kind);

                if backprop {
                    self.step_size = -self.step_size; // Restore to a positive step size
                }

                #[cfg(not(target_arch = "wasm32"))]
                {
                    if self.log_progress {
                        let tock: Duration = tick.elapsed().into();
                        info!("\t... done in {}", tock);
                    }
                }

                // Rotate back if needed
                if let Some(original_frame) = original_frame {
                    let new_orbit = self
                        .almanac
                        .transform_to(self.state.orbit(), original_frame, None)
                        .context(DynamicsAlmanacSnafu {
                            action: "transforming state from desired integration frame",
                        })
                        .context(DynamicsSnafu)?;
                    self.state.set_orbit(new_orbit);
                }

                return Ok(self.state);
            } else {
                #[cfg(not(target_arch = "wasm32"))]
                {
                    if self.log_progress {
                        let tock: Duration = prev_tick.elapsed().into();
                        if tock.to_unit(Unit::Minute) > 1.0 {
                            // Report status every minute
                            let cur_epoch = self.state.epoch();
                            let dur_to_go = (stop_time - cur_epoch).floor(Unit::Second * 1);
                            info!(
                                "\t... current epoch {}, remaining {} (step size = {})",
                                cur_epoch, dur_to_go, self.details.step
                            );
                            prev_tick = Instant::now();
                        }
                    }
                }
                self.single_step()?;
                // Publish to channel if provided
                if let Some(ref chan) = maybe_tx_chan {
                    if let Err(e) = chan.send(self.state) {
                        warn!("{} when sending on channel", e)
                    }
                }
            }
        }
    }

    /// This method propagates the provided Dynamics for the provided duration.
    pub fn for_duration(&mut self, duration: Duration) -> Result<D::StateType, PropagationError> {
        self.for_duration_channel_option(duration, None)
    }

    /// This method propagates the provided Dynamics for the provided duration and publishes each state on the channel.
    pub fn for_duration_with_channel(
        &mut self,
        duration: Duration,
        tx_chan: Sender<D::StateType>,
    ) -> Result<D::StateType, PropagationError> {
        self.for_duration_channel_option(duration, Some(tx_chan))
    }

    /// Propagates the provided Dynamics until the provided epoch. Returns the end state.
    pub fn until_epoch(&mut self, end_time: Epoch) -> Result<D::StateType, PropagationError> {
        let duration: Duration = end_time - self.state.epoch();
        self.for_duration(duration)
    }

    /// Propagates the provided Dynamics until the provided epoch and publishes states on the provided channel. Returns the end state.
    pub fn until_epoch_with_channel(
        &mut self,
        end_time: Epoch,
        tx_chan: Sender<D::StateType>,
    ) -> Result<D::StateType, PropagationError> {
        let duration: Duration = end_time - self.state.epoch();
        self.for_duration_with_channel(duration, tx_chan)
    }

    /// Propagates the provided Dynamics for the provided duration and generate the trajectory of these dynamics on its own thread.
    /// Returns the end state and the trajectory.
    #[allow(clippy::map_clone)]
    pub fn for_duration_with_traj(
        &mut self,
        duration: Duration,
    ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
    where
        <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
        D::StateType: Interpolatable,
    {
        let end_state;
        let mut traj = Traj::new();
        let start_state = self.state;

        let rx = {
            // Channels that have a single state for the propagator
            let (tx, rx) = channel();
            // Propagate the dynamics
            // Note that the end state is also sent on the channel before the return of this function.
            end_state = self.for_duration_with_channel(duration, tx)?;
            rx
        };

        traj.states = rx.into_iter().par_bridge().collect();
        // Push the start state -- will be reordered in the finalize call.
        // For some reason, this must happen at the end -- can't figure out why.
        traj.states.push(start_state);

        traj.finalize();

        Ok((end_state, traj))
    }

    /// Propagates the provided Dynamics until the provided epoch and generate the trajectory of these dynamics on its own thread.
    /// Returns the end state and the trajectory.
    /// Known bug #190: Cannot generate a valid trajectory when propagating backward
    pub fn until_epoch_with_traj(
        &mut self,
        end_time: Epoch,
    ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
    where
        <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
        D::StateType: Interpolatable,
    {
        let duration: Duration = end_time - self.state.epoch();
        self.for_duration_with_traj(duration)
    }

    /// Propagate until a specific event is found once.
    /// Returns the state found and the trajectory until `max_duration`
    pub fn until_event<F: EventEvaluator<D::StateType>>(
        &mut self,
        max_duration: Duration,
        event: &F,
    ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
    where
        <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
        D::StateType: Interpolatable,
    {
        self.until_nth_event(max_duration, event, 0)
    }

    /// Propagate until a specific event is found `trigger` times.
    /// Returns the state found and the trajectory until `max_duration`
    pub fn until_nth_event<F: EventEvaluator<D::StateType>>(
        &mut self,
        max_duration: Duration,
        event: &F,
        trigger: usize,
    ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
    where
        <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
        D::StateType: Interpolatable,
    {
        info!("Searching for {}", event);

        let (_, traj) = self.for_duration_with_traj(max_duration)?;
        // Now, find the requested event
        let events = traj
            .find(event, self.almanac.clone())
            .context(TrajectoryEventSnafu)?;
        match events.get(trigger) {
            Some(event_state) => Ok((event_state.state, traj)),
            None => Err(PropagationError::NthEventError {
                nth: trigger,
                found: events.len(),
            }),
        }
    }

    /// Take a single propagator step and emit the result on the TX channel (if enabled)
    pub fn single_step(&mut self) -> Result<(), PropagationError> {
        let (t, state_vec) = self.derive()?;
        self.state.set(self.state.epoch() + t, &state_vec);
        self.state = self
            .prop
            .dynamics
            .finally(self.state, self.almanac.clone())
            .context(DynamicsSnafu)?;

        Ok(())
    }

    /// This method integrates whichever function is provided as `d_xdt`. Everything passed to this function is in **seconds**.
    ///
    /// This function returns the step sized used (as a Duration) and the new state as y_{n+1} = y_n + \frac{dy_n}{dt}.
    /// To get the integration details, check `self.latest_details`.
    fn derive(
        &mut self,
    ) -> Result<(Duration, OVector<f64, <D::StateType as State>::VecLength>), PropagationError>
    {
        let state_vec = &self.state.to_vector();
        let state_ctx = &self.state;
        // Reset the number of attempts used (we don't reset the error because it's set before it's read)
        self.details.attempts = 1;
        // Convert the step size to seconds -- it's mutable because we may change it below
        let mut step_size_s = self.step_size.to_seconds();
        loop {
            let ki = self
                .prop
                .dynamics
                .eom(0.0, state_vec, state_ctx, self.almanac.clone())
                .context(DynamicsSnafu)?;
            self.k[0] = ki;
            let mut a_idx: usize = 0;
            for i in 0..(self.prop.method.stages() - 1) {
                // Let's compute the c_i by summing the relevant items from the list of coefficients.
                // \sum_{j=1}^{i-1} a_ij  ∀ i ∈ [2, s]
                let mut ci: f64 = 0.0;
                // The wi stores the a_{s1} * k_1 + a_{s2} * k_2 + ... + a_{s, s-1} * k_{s-1} +
                let mut wi = OVector::<f64, <D::StateType as State>::VecLength>::from_element(0.0);
                for kj in &self.k[0..i + 1] {
                    let a_ij = self.prop.method.a_coeffs()[a_idx];
                    ci += a_ij;
                    wi += a_ij * kj;
                    a_idx += 1;
                }

                let ki = self
                    .prop
                    .dynamics
                    .eom(
                        ci * step_size_s,
                        &(state_vec + step_size_s * wi),
                        state_ctx,
                        self.almanac.clone(),
                    )
                    .context(DynamicsSnafu)?;
                self.k[i + 1] = ki;
            }
            // Compute the next state and the error
            let mut next_state = state_vec.clone();
            // State error estimation from https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#Adaptive_Runge%E2%80%93Kutta_methods
            // This is consistent with GMAT https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/propagator/RungeKutta.cpp#L537
            let mut error_est =
                OVector::<f64, <D::StateType as State>::VecLength>::from_element(0.0);
            for (i, ki) in self.k.iter().enumerate() {
                let b_i = self.prop.method.b_coeffs()[i];
                if !self.fixed_step {
                    let b_i_star = self.prop.method.b_coeffs()[i + self.prop.method.stages()];
                    error_est += step_size_s * (b_i - b_i_star) * ki;
                }
                next_state += step_size_s * b_i * ki;
            }

            if self.fixed_step {
                // Using a fixed step, no adaptive step necessary
                self.details.step = self.step_size;
                return Ok(((self.details.step), next_state));
            } else {
                // Compute the error estimate.
                self.details.error =
                    self.prop
                        .opts
                        .error_ctrl
                        .estimate(&error_est, &next_state, state_vec);

                if self.details.error <= self.prop.opts.tolerance
                    || step_size_s <= self.prop.opts.min_step.to_seconds()
                    || self.details.attempts >= self.prop.opts.attempts
                {
                    if next_state.iter().any(|x| x.is_nan()) {
                        return Err(PropagationError::PropMathError {
                            source: MathError::DomainError {
                                value: f64::NAN,
                                msg: "try another integration method, or decrease step size; part of state vector is",
                            },
                        });
                    }
                    if self.details.attempts >= self.prop.opts.attempts {
                        warn!(
                            "Could not further decrease step size: maximum number of attempts reached ({})",
                            self.details.attempts
                        );
                    }

                    self.details.step = step_size_s * Unit::Second;
                    if self.details.error < self.prop.opts.tolerance {
                        // Let's increase the step size for the next iteration.
                        // Error is less than tolerance, let's attempt to increase the step for the next iteration.
                        let proposed_step = 0.9
                            * step_size_s
                            * (self.prop.opts.tolerance / self.details.error)
                                .powf(1.0 / f64::from(self.prop.method.order()));

                        step_size_s = if proposed_step > self.prop.opts.max_step.to_seconds() {
                            self.prop.opts.max_step.to_seconds()
                        } else {
                            proposed_step
                        };
                    }
                    // In all cases, let's update the step size to whatever was the adapted step size
                    self.step_size = step_size_s * Unit::Second;
                    if self.step_size.abs() < self.prop.opts.min_step {
                        // Custom signum in case the step size becomes zero.
                        let signum = if self.step_size.is_negative() {
                            -1.0
                        } else {
                            1.0
                        };
                        self.step_size = self.prop.opts.min_step * signum;
                    }
                    return Ok((self.details.step, next_state));
                } else {
                    // Error is too high and we aren't using the smallest step, and we haven't hit the max number of attempts.
                    // So let's adapt the step size.
                    self.details.attempts += 1;
                    let proposed_step_s = 0.9
                        * step_size_s
                        * (self.prop.opts.tolerance / self.details.error)
                            .powf(1.0 / f64::from(self.prop.method.order() - 1));

                    step_size_s = if proposed_step_s < self.prop.opts.min_step.to_seconds() {
                        self.prop.opts.min_step.to_seconds()
                    } else {
                        proposed_step_s
                    };
                    // Note that we don't set self.step_size, that will be updated right before we return
                }
            }
        }
    }

    /// Copy the details of the latest integration step.
    pub fn latest_details(&self) -> IntegrationDetails {
        self.details
    }
}