nyx_space/od/ground_station/trk_device.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use super::{ODAlmanacSnafu, ODError, ODTrajSnafu, TrackingDevice};
use crate::md::prelude::{Interpolatable, Traj};
use crate::od::msr::measurement::Measurement;
use crate::od::msr::MeasurementType;
use crate::time::Epoch;
use crate::Spacecraft;
use anise::errors::AlmanacResult;
use anise::frames::Frame;
use anise::prelude::{Almanac, Orbit};
use hifitime::TimeUnits;
use indexmap::IndexSet;
use rand_pcg::Pcg64Mcg;
use snafu::ResultExt;
use std::sync::Arc;
use super::GroundStation;
impl TrackingDevice<Spacecraft> for GroundStation {
fn measurement_types(&self) -> &IndexSet<MeasurementType> {
&self.measurement_types
}
/// Perform a measurement from the ground station to the receiver (rx).
fn measure(
&mut self,
epoch: Epoch,
traj: &Traj<Spacecraft>,
rng: Option<&mut Pcg64Mcg>,
almanac: Arc<Almanac>,
) -> Result<Option<Measurement>, ODError> {
match self.integration_time {
Some(integration_time) => {
// If out of traj bounds, return None, else the whole strand is rejected.
let rx_0 = match traj.at(epoch - integration_time) {
Ok(rx) => rx,
Err(_) => return Ok(None),
};
let rx_1 = match traj.at(epoch).context(ODTrajSnafu) {
Ok(rx) => rx,
Err(_) => return Ok(None),
};
let obstructing_body = if !self.frame.ephem_origin_match(rx_0.frame()) {
Some(rx_0.frame())
} else {
None
};
let aer_t0 = self
.azimuth_elevation_of(rx_0.orbit, obstructing_body, &almanac)
.context(ODAlmanacSnafu {
action: "computing AER",
})?;
let aer_t1 = self
.azimuth_elevation_of(rx_1.orbit, obstructing_body, &almanac)
.context(ODAlmanacSnafu {
action: "computing AER",
})?;
if aer_t0.elevation_deg < self.elevation_mask_deg
|| aer_t1.elevation_deg < self.elevation_mask_deg
{
debug!(
"{} (el. mask {:.3} deg) but object moves from {:.3} to {:.3} deg -- no measurement",
self.name, self.elevation_mask_deg, aer_t0.elevation_deg, aer_t1.elevation_deg
);
return Ok(None);
}
// Noises are computed at the midpoint of the integration time.
let noises = self.noises(epoch - integration_time * 0.5, rng)?;
let mut msr = Measurement::new(self.name.clone(), epoch + noises[0].seconds());
for (ii, msr_type) in self.measurement_types.iter().enumerate() {
let msr_value = msr_type.compute_two_way(aer_t0, aer_t1, noises[ii + 1])?;
msr.push(*msr_type, msr_value);
}
Ok(Some(msr))
}
None => self.measure_instantaneous(traj.at(epoch).context(ODTrajSnafu)?, rng, almanac),
}
}
fn name(&self) -> String {
self.name.clone()
}
fn location(&self, epoch: Epoch, frame: Frame, almanac: Arc<Almanac>) -> AlmanacResult<Orbit> {
almanac.transform_to(self.to_orbit(epoch, &almanac).unwrap(), frame, None)
}
fn measure_instantaneous(
&mut self,
rx: Spacecraft,
rng: Option<&mut Pcg64Mcg>,
almanac: Arc<Almanac>,
) -> Result<Option<Measurement>, ODError> {
let obstructing_body = if !self.frame.ephem_origin_match(rx.frame()) {
Some(rx.frame())
} else {
None
};
let aer = self
.azimuth_elevation_of(rx.orbit, obstructing_body, &almanac)
.context(ODAlmanacSnafu {
action: "computing AER",
})?;
if aer.elevation_deg >= self.elevation_mask_deg {
// Only update the noises if the measurement is valid.
let noises = self.noises(rx.orbit.epoch, rng)?;
let mut msr = Measurement::new(self.name.clone(), rx.orbit.epoch + noises[0].seconds());
for (ii, msr_type) in self.measurement_types.iter().enumerate() {
let msr_value = msr_type.compute_one_way(aer, noises[ii + 1])?;
msr.push(*msr_type, msr_value);
}
Ok(Some(msr))
} else {
debug!(
"{} {} (el. mask {:.3} deg), object at {:.3} deg -- no measurement",
self.name, rx.orbit.epoch, self.elevation_mask_deg, aer.elevation_deg
);
Ok(None)
}
}
/// Returns the measurement noise of this ground station.
///
/// # Methodology
/// Noises are modeled using a [StochasticNoise] process, defined by the sigma on the turn-on bias and on the steady state noise.
/// The measurement noise is computed assuming that all measurements are independent variables, i.e. the measurement matrix is
/// a diagonal matrix. The first item in the diagonal is the range noise (in km), set to the square of the steady state sigma. The
/// second item is the Doppler noise (in km/s), set to the square of the steady state sigma of that Gauss Markov process.
fn measurement_covar(&self, msr_type: MeasurementType, epoch: Epoch) -> Result<f64, ODError> {
let stochastics = self.stochastic_noises.as_ref().unwrap();
Ok(stochastics
.get(&msr_type)
.ok_or(ODError::NoiseNotConfigured {
kind: format!("{msr_type:?}"),
})?
.covariance(epoch))
}
}