nyx_space/md/opti/targeter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use snafu::ResultExt;
use crate::dynamics::guidance::LocalFrame;
use crate::errors::TargetingError;
use crate::md::objective::Objective;
use crate::md::prelude::*;
use crate::md::AstroSnafu;
use crate::md::PropSnafu;
use crate::md::StateParameter;
pub use crate::md::{Variable, Vary};
use std::fmt;
use super::solution::TargeterSolution;
/// An optimizer structure with V control variables and O objectives.
#[derive(Clone)]
pub struct Targeter<'a, const V: usize, const O: usize> {
/// The propagator setup (kind, stages, etc.)
pub prop: &'a Propagator<SpacecraftDynamics>,
/// The list of objectives of this targeter
pub objectives: [Objective; O],
/// An optional frame (and Cosm) to compute the objectives in.
/// Needed if the propagation frame is separate from objectives frame (e.g. for B Plane targeting).
pub objective_frame: Option<Frame>,
/// The kind of correction to apply to achieve the objectives
pub variables: [Variable; V],
/// The frame in which the correction should be applied, must be either a local frame or inertial
pub correction_frame: Option<LocalFrame>,
/// Maximum number of iterations
pub iterations: usize,
}
impl<'a, const V: usize, const O: usize> fmt::Display for Targeter<'a, V, O> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut objmsg = String::from("");
for obj in &self.objectives {
objmsg.push_str(&format!("{obj}; "));
}
let mut varmsg = String::from("");
for var in &self.variables {
varmsg.push_str(&format!("{var}; "));
}
write!(f, "Targeter:\n\tObjectives: {objmsg}\n\tCorrect: {varmsg}")
}
}
impl<'a, const O: usize> Targeter<'a, 3, O> {
/// Create a new Targeter which will apply an impulsive delta-v correction.
pub fn delta_v(prop: &'a Propagator<SpacecraftDynamics>, objectives: [Objective; O]) -> Self {
Self {
prop,
objectives,
variables: [
Vary::VelocityX.into(),
Vary::VelocityY.into(),
Vary::VelocityZ.into(),
],
iterations: 100,
objective_frame: None,
correction_frame: None,
}
}
/// Create a new Targeter which will MOVE the position of the spacecraft at the correction epoch
pub fn delta_r(prop: &'a Propagator<SpacecraftDynamics>, objectives: [Objective; O]) -> Self {
Self {
prop,
objectives,
variables: [
Vary::PositionX.into(),
Vary::PositionY.into(),
Vary::PositionZ.into(),
],
iterations: 100,
objective_frame: None,
correction_frame: None,
}
}
/// Create a new Targeter which will apply an impulsive delta-v correction on all components of the VNC frame. By default, max step is 0.5 km/s.
pub fn vnc(prop: &'a Propagator<SpacecraftDynamics>, objectives: [Objective; O]) -> Self {
Self {
prop,
objectives,
variables: [
Vary::VelocityX.into(),
Vary::VelocityY.into(),
Vary::VelocityZ.into(),
],
iterations: 100,
objective_frame: None,
correction_frame: Some(LocalFrame::VNC),
}
}
}
impl<'a, const O: usize> Targeter<'a, 4, O> {
/// Create a new Targeter which will apply a continuous thrust for the whole duration of the segment
pub fn thrust_dir(
prop: &'a Propagator<SpacecraftDynamics>,
objectives: [Objective; O],
) -> Self {
Self {
prop,
objectives,
variables: [
Variable::from(Vary::ThrustX),
Variable::from(Vary::ThrustY),
Variable::from(Vary::ThrustZ),
Variable::from(Vary::ThrustLevel),
],
iterations: 20,
objective_frame: None,
correction_frame: None,
}
}
}
impl<'a, const O: usize> Targeter<'a, 7, O> {
/// Create a new Targeter which will apply a continuous thrust for the whole duration of the segment
pub fn thrust_dir_rate(
prop: &'a Propagator<SpacecraftDynamics>,
objectives: [Objective; O],
) -> Self {
Self {
prop,
objectives,
variables: [
Variable::from(Vary::ThrustX),
Variable::from(Vary::ThrustY),
Variable::from(Vary::ThrustZ),
Variable::from(Vary::ThrustLevel),
Variable::from(Vary::ThrustRateX),
Variable::from(Vary::ThrustRateY),
Variable::from(Vary::ThrustRateZ),
],
iterations: 50,
objective_frame: None,
correction_frame: None,
}
}
}
impl<'a, const O: usize> Targeter<'a, 10, O> {
/// Create a new Targeter which will apply a continuous thrust for the whole duration of the segment
pub fn thrust_profile(
prop: &'a Propagator<SpacecraftDynamics>,
objectives: [Objective; O],
) -> Self {
Self {
prop,
objectives,
variables: [
Variable::from(Vary::ThrustX),
Variable::from(Vary::ThrustY),
Variable::from(Vary::ThrustZ),
Variable::from(Vary::ThrustLevel),
Variable::from(Vary::ThrustRateX),
Variable::from(Vary::ThrustRateY),
Variable::from(Vary::ThrustRateZ),
Variable::from(Vary::ThrustAccelX),
Variable::from(Vary::ThrustAccelY),
Variable::from(Vary::ThrustAccelZ),
],
iterations: 50,
objective_frame: None,
correction_frame: None,
}
}
}
impl<'a, const V: usize, const O: usize> Targeter<'a, V, O> {
/// Create a new Targeter which will apply an impulsive delta-v correction.
pub fn new(
prop: &'a Propagator<SpacecraftDynamics>,
variables: [Variable; V],
objectives: [Objective; O],
) -> Self {
Self {
prop,
objectives,
variables,
iterations: 100,
objective_frame: None,
correction_frame: None,
}
}
/// Create a new Targeter which will apply an impulsive delta-v correction.
pub fn in_frame(
prop: &'a Propagator<SpacecraftDynamics>,
variables: [Variable; V],
objectives: [Objective; O],
objective_frame: Frame,
) -> Self {
Self {
prop,
objectives,
variables,
iterations: 100,
objective_frame: Some(objective_frame),
correction_frame: None,
}
}
/// Create a new Targeter which will apply an impulsive delta-v correction on the specified components of the VNC frame.
pub fn vnc_with_components(
prop: &'a Propagator<SpacecraftDynamics>,
variables: [Variable; V],
objectives: [Objective; O],
) -> Self {
Self {
prop,
objectives,
variables,
iterations: 100,
objective_frame: None,
correction_frame: Some(LocalFrame::VNC),
}
}
/// Runs the targeter using finite differencing (for now).
#[allow(clippy::identity_op)]
pub fn try_achieve_from(
&self,
initial_state: Spacecraft,
correction_epoch: Epoch,
achievement_epoch: Epoch,
almanac: Arc<Almanac>,
) -> Result<TargeterSolution<V, O>, TargetingError> {
self.try_achieve_fd(initial_state, correction_epoch, achievement_epoch, almanac)
}
/// Apply a correction and propagate to achievement epoch. Also checks that the objectives are indeed matched
pub fn apply(
&self,
solution: &TargeterSolution<V, O>,
almanac: Arc<Almanac>,
) -> Result<Spacecraft, TargetingError> {
let (xf, _) = self.apply_with_traj(solution, almanac)?;
Ok(xf)
}
/// Apply a correction and propagate to achievement epoch, return the final state and trajectory.
/// Also checks that the objectives are indeed matched.
pub fn apply_with_traj(
&self,
solution: &TargeterSolution<V, O>,
almanac: Arc<Almanac>,
) -> Result<(Spacecraft, Traj<Spacecraft>), TargetingError> {
let (xf, traj) = match solution.to_mnvr() {
Ok(mnvr) => {
println!("{mnvr}");
let mut prop = self.prop.clone();
prop.dynamics = prop.dynamics.with_guidance_law(Arc::new(mnvr));
prop.with(solution.corrected_state, almanac)
.until_epoch_with_traj(solution.achieved_state.epoch())
.context(PropSnafu)?
}
Err(_) => {
// This isn't a finite burn maneuver, let's just apply the correction
// Propagate until achievement epoch
self.prop
.with(solution.corrected_state, almanac)
.until_epoch_with_traj(solution.achieved_state.epoch())
.context(PropSnafu)?
}
};
// Build the partials
let xf_dual = OrbitDual::from(xf.orbit);
let mut is_bplane_tgt = false;
for obj in &self.objectives {
if obj.parameter.is_b_plane() {
is_bplane_tgt = true;
}
}
// Build the B-Plane once, if needed
let b_plane = if is_bplane_tgt {
Some(BPlane::from_dual(xf_dual).context(AstroSnafu)?)
} else {
None
};
let mut converged = true;
let mut param_errors = Vec::new();
for obj in &self.objectives {
let partial = if obj.parameter.is_b_plane() {
match obj.parameter {
StateParameter::BdotR => b_plane.unwrap().b_r,
StateParameter::BdotT => b_plane.unwrap().b_t,
StateParameter::BLTOF => b_plane.unwrap().ltof_s,
_ => unreachable!(),
}
} else {
xf_dual.partial_for(obj.parameter).context(AstroSnafu)?
};
let param_err = obj.desired_value - partial.real();
if param_err.abs() > obj.tolerance {
converged = false;
}
param_errors.push(param_err);
}
if converged {
Ok((xf, traj))
} else {
let mut objmsg = String::from("");
for (i, obj) in self.objectives.iter().enumerate() {
objmsg.push_str(&format!(
"{:?} = {:.3} BUT should be {:.3} (± {:.1e}) (error = {:.3})",
obj.parameter,
obj.desired_value + param_errors[i],
obj.desired_value,
obj.tolerance,
param_errors[i]
));
}
Err(TargetingError::Verification { msg: objmsg })
}
}
}