nyx_space/md/opti/
raphson_hyperdual.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use snafu::{ensure, ResultExt};

use super::solution::TargeterSolution;
use crate::cosmic::AstroAlmanacSnafu;
use crate::errors::TargetingError;
use crate::linalg::{DMatrix, SVector};
use crate::md::{prelude::*, PropSnafu, UnderdeterminedProblemSnafu};
use crate::md::{AstroSnafu, StateParameter};
pub use crate::md::{Variable, Vary};
use crate::pseudo_inverse;
use crate::utils::are_eigenvalues_stable;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;

impl<'a, const V: usize, const O: usize> Targeter<'a, V, O> {
    /// Differential correction using hyperdual numbers for the objectives
    #[allow(clippy::comparison_chain)]
    pub fn try_achieve_dual(
        &self,
        initial_state: Spacecraft,
        correction_epoch: Epoch,
        achievement_epoch: Epoch,
        almanac: Arc<Almanac>,
    ) -> Result<TargeterSolution<V, O>, TargetingError> {
        ensure!(!self.objectives.is_empty(), UnderdeterminedProblemSnafu);

        let mut is_bplane_tgt = false;
        for obj in &self.objectives {
            if obj.parameter.is_b_plane() {
                is_bplane_tgt = true;
                break;
            }
        }

        // Now we know that the problem is correctly defined, so let's propagate as is to the epoch
        // where the correction should be applied.
        let xi_start = self
            .prop
            .with(initial_state, almanac.clone())
            .until_epoch(correction_epoch)
            .context(PropSnafu)?;

        debug!("initial_state = {initial_state:?}");
        debug!("xi_start = {xi_start:?}");

        let mut xi = xi_start;

        // Store the total correction in a static vector
        let mut total_correction = SVector::<f64, V>::zeros();

        // Apply the initial guess
        for (i, var) in self.variables.iter().enumerate() {
            match var.component {
                Vary::PositionX => {
                    xi.orbit.radius_km.x += var.init_guess;
                }
                Vary::PositionY => {
                    xi.orbit.radius_km.y += var.init_guess;
                }
                Vary::PositionZ => {
                    xi.orbit.radius_km.z += var.init_guess;
                }
                Vary::VelocityX => {
                    xi.orbit.velocity_km_s.x += var.init_guess;
                }
                Vary::VelocityY => {
                    xi.orbit.velocity_km_s.y += var.init_guess;
                }
                Vary::VelocityZ => {
                    xi.orbit.velocity_km_s.z += var.init_guess;
                }
                _ => {
                    return Err(TargetingError::UnsupportedVariable {
                        var: var.to_string(),
                    });
                }
            }
            total_correction[i] += var.init_guess;
        }

        let mut prev_err_norm = f64::INFINITY;

        // Determine padding in debugging info
        // For the width, we find the largest desired values and multiply it by the order of magnitude of its tolerance
        let max_obj_val = self
            .objectives
            .iter()
            .map(|obj| {
                obj.desired_value.abs().ceil() as i32
                    * 10_i32.pow(obj.tolerance.abs().log10().ceil() as u32)
            })
            .max()
            .unwrap();

        let max_obj_tol = self
            .objectives
            .iter()
            .map(|obj| obj.tolerance.log10().abs().ceil() as usize)
            .max()
            .unwrap();

        let width = f64::from(max_obj_val).log10() as usize + 2 + max_obj_tol;

        #[cfg(not(target_arch = "wasm32"))]
        let start_instant = Instant::now();

        for it in 0..=self.iterations {
            // Now, enable the trajectory STM for this state so we can apply the correction
            xi.enable_stm();

            // Full propagation for a half period duration is slightly more precise than a step by step one with multiplications in between.
            let xf = self
                .prop
                .with(xi, almanac.clone())
                .until_epoch(achievement_epoch)
                .context(PropSnafu)?;

            // Check linearization
            if !are_eigenvalues_stable(xf.stm().unwrap().complex_eigenvalues()) {
                warn!(
                    "STM linearization assumption is wrong for a time step of {}",
                    achievement_epoch - correction_epoch
                );
            }

            let xf_dual_obj_frame = match &self.objective_frame {
                Some(frame) => {
                    let orbit_obj_frame = almanac
                        .transform_to(xf.orbit, *frame, None)
                        .context(AstroAlmanacSnafu)
                        .context(AstroSnafu)?;

                    OrbitDual::from(orbit_obj_frame)
                }
                None => OrbitDual::from(xf.orbit),
            };

            // Build the error vector
            let mut err_vector = SVector::<f64, O>::zeros();
            let mut converged = true;

            // Build the B-Plane once, if needed, and always in the objective frame
            let b_plane = if is_bplane_tgt {
                Some(BPlane::from_dual(xf_dual_obj_frame).context(AstroSnafu)?)
            } else {
                None
            };

            // Build debugging information
            let mut objmsg = Vec::new();

            // The Jacobian includes the sensitivity of each objective with respect to each variable for the whole trajectory.
            // As such, it includes the STM of that variable for the whole propagation arc.
            let mut jac = DMatrix::from_element(self.objectives.len(), self.variables.len(), 0.0);

            for (i, obj) in self.objectives.iter().enumerate() {
                let xf_partial = if obj.parameter.is_b_plane() {
                    match obj.parameter {
                        StateParameter::BdotR => b_plane.unwrap().b_r,
                        StateParameter::BdotT => b_plane.unwrap().b_t,
                        StateParameter::BLTOF => b_plane.unwrap().ltof_s,
                        _ => unreachable!(),
                    }
                } else {
                    xf_dual_obj_frame
                        .partial_for(obj.parameter)
                        .context(AstroSnafu)?
                };

                let achieved = xf_partial.real();

                let (ok, param_err) = obj.assess_value(achieved);
                if !ok {
                    converged = false;
                }
                err_vector[i] = param_err;

                objmsg.push(format!(
                    "\t{:?}: achieved = {:>width$.prec$}\t desired = {:>width$.prec$}\t scaled error = {:>width$.prec$}",
                    obj.parameter,
                    achieved,
                    obj.desired_value,
                    param_err, width=width, prec=max_obj_tol
                ));

                // Build the Jacobian with the partials of the objectives with respect to all of the final state parameters
                // We localize the problem in the STM.
                // TODO: VNC (how?!)
                let mut partial_vec = DMatrix::from_element(1, 6, 0.0);
                for (i, val) in [
                    xf_partial.wtr_x(),
                    xf_partial.wtr_y(),
                    xf_partial.wtr_z(),
                    xf_partial.wtr_vx(),
                    xf_partial.wtr_vy(),
                    xf_partial.wtr_vz(),
                ]
                .iter()
                .enumerate()
                {
                    partial_vec[(0, i)] = *val;
                }

                for (j, var) in self.variables.iter().enumerate() {
                    // Grab the STM first.
                    let sc_stm = xf.stm().unwrap();
                    let stm = sc_stm.fixed_view::<6, 6>(0, 0);
                    let idx = var.component.vec_index();
                    // Compute the partial of the objective over all components wrt to all of the components in the STM of the control variable.
                    let rslt = &partial_vec * stm.fixed_columns::<1>(idx);
                    jac[(i, j)] = rslt[(0, 0)];
                }
            }

            if converged {
                #[cfg(not(target_arch = "wasm32"))]
                let conv_dur = Instant::now() - start_instant;
                #[cfg(target_arch = "wasm32")]
                let conv_dur = Duration::ZERO.into();
                let mut state = xi_start;
                // Convert the total correction from VNC back to integration frame in case that's needed.
                for (i, var) in self.variables.iter().enumerate() {
                    match var.component {
                        Vary::PositionX => state.orbit.radius_km.x += total_correction[i],
                        Vary::PositionY => state.orbit.radius_km.y += total_correction[i],
                        Vary::PositionZ => state.orbit.radius_km.z += total_correction[i],
                        Vary::VelocityX => state.orbit.velocity_km_s.x += total_correction[i],
                        Vary::VelocityY => state.orbit.velocity_km_s.y += total_correction[i],
                        Vary::VelocityZ => state.orbit.velocity_km_s.z += total_correction[i],
                        _ => {
                            return Err(TargetingError::UnsupportedVariable {
                                var: var.to_string(),
                            })
                        }
                    }
                }

                let sol = TargeterSolution {
                    corrected_state: state,
                    achieved_state: xf,
                    correction: total_correction,
                    computation_dur: conv_dur,
                    variables: self.variables,
                    achieved_errors: err_vector,
                    achieved_objectives: self.objectives,
                    iterations: it,
                };
                info!("Targeter -- CONVERGED in {} iterations", it);
                for obj in &objmsg {
                    info!("{}", obj);
                }
                return Ok(sol);
            }

            // We haven't converged yet, so let's build the error vector
            if (err_vector.norm() - prev_err_norm).abs() < 1e-10 {
                return Err(TargetingError::CorrectionIneffective {
                    cur_val: err_vector.norm(),
                    prev_val: prev_err_norm,
                    action: "No change in objective errors",
                });
            }
            prev_err_norm = err_vector.norm();

            debug!("Jacobian {}", jac);

            // Perform the pseudo-inverse if needed, else just inverse
            let jac_inv = pseudo_inverse!(&jac)?;

            debug!("Inverse Jacobian {}", jac_inv);

            let mut delta = jac_inv * err_vector;

            debug!("Error vector: {}\nRaw correction: {}", err_vector, delta);

            // And finally apply it to the xi
            for (i, var) in self.variables.iter().enumerate() {
                // Choose the minimum step between the provided max step and the correction.
                if delta[i].abs() > var.max_step {
                    delta[i] = var.max_step * delta[i].signum();
                } else if delta[i] > var.max_value {
                    delta[i] = var.max_value;
                } else if delta[i] < var.min_value {
                    delta[i] = var.min_value;
                }

                info!(
                    "Correction {:?} (element {}): {}",
                    var.component, i, delta[i]
                );

                match var.component {
                    Vary::PositionX => {
                        xi.orbit.radius_km.x += delta[i];
                    }
                    Vary::PositionY => {
                        xi.orbit.radius_km.y += delta[i];
                    }
                    Vary::PositionZ => {
                        xi.orbit.radius_km.z += delta[i];
                    }
                    Vary::VelocityX => {
                        xi.orbit.velocity_km_s.x += delta[i];
                    }
                    Vary::VelocityY => {
                        xi.orbit.velocity_km_s.y += delta[i];
                    }
                    Vary::VelocityZ => {
                        xi.orbit.velocity_km_s.z += delta[i];
                    }
                    _ => {
                        return Err(TargetingError::UnsupportedVariable {
                            var: var.to_string(),
                        });
                    }
                }
            }
            total_correction += delta;
            debug!("Total correction: {:e}", total_correction);

            // Log progress
            info!("Targeter -- Iteration #{} -- {}", it, achievement_epoch);
            for obj in &objmsg {
                info!("{}", obj);
            }
        }

        Err(TargetingError::TooManyIterations)
    }
}