nyx_space/md/opti/raphson_hyperdual.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use snafu::{ensure, ResultExt};
use super::solution::TargeterSolution;
use crate::cosmic::AstroAlmanacSnafu;
use crate::errors::TargetingError;
use crate::linalg::{DMatrix, SVector};
use crate::md::{prelude::*, PropSnafu, UnderdeterminedProblemSnafu};
use crate::md::{AstroSnafu, StateParameter};
pub use crate::md::{Variable, Vary};
use crate::pseudo_inverse;
use crate::utils::are_eigenvalues_stable;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;
impl<'a, const V: usize, const O: usize> Targeter<'a, V, O> {
/// Differential correction using hyperdual numbers for the objectives
#[allow(clippy::comparison_chain)]
pub fn try_achieve_dual(
&self,
initial_state: Spacecraft,
correction_epoch: Epoch,
achievement_epoch: Epoch,
almanac: Arc<Almanac>,
) -> Result<TargeterSolution<V, O>, TargetingError> {
ensure!(!self.objectives.is_empty(), UnderdeterminedProblemSnafu);
let mut is_bplane_tgt = false;
for obj in &self.objectives {
if obj.parameter.is_b_plane() {
is_bplane_tgt = true;
break;
}
}
// Now we know that the problem is correctly defined, so let's propagate as is to the epoch
// where the correction should be applied.
let xi_start = self
.prop
.with(initial_state, almanac.clone())
.until_epoch(correction_epoch)
.context(PropSnafu)?;
debug!("initial_state = {initial_state:?}");
debug!("xi_start = {xi_start:?}");
let mut xi = xi_start;
// Store the total correction in a static vector
let mut total_correction = SVector::<f64, V>::zeros();
// Apply the initial guess
for (i, var) in self.variables.iter().enumerate() {
match var.component {
Vary::PositionX => {
xi.orbit.radius_km.x += var.init_guess;
}
Vary::PositionY => {
xi.orbit.radius_km.y += var.init_guess;
}
Vary::PositionZ => {
xi.orbit.radius_km.z += var.init_guess;
}
Vary::VelocityX => {
xi.orbit.velocity_km_s.x += var.init_guess;
}
Vary::VelocityY => {
xi.orbit.velocity_km_s.y += var.init_guess;
}
Vary::VelocityZ => {
xi.orbit.velocity_km_s.z += var.init_guess;
}
_ => {
return Err(TargetingError::UnsupportedVariable {
var: var.to_string(),
});
}
}
total_correction[i] += var.init_guess;
}
let mut prev_err_norm = f64::INFINITY;
// Determine padding in debugging info
// For the width, we find the largest desired values and multiply it by the order of magnitude of its tolerance
let max_obj_val = self
.objectives
.iter()
.map(|obj| {
obj.desired_value.abs().ceil() as i32
* 10_i32.pow(obj.tolerance.abs().log10().ceil() as u32)
})
.max()
.unwrap();
let max_obj_tol = self
.objectives
.iter()
.map(|obj| obj.tolerance.log10().abs().ceil() as usize)
.max()
.unwrap();
let width = f64::from(max_obj_val).log10() as usize + 2 + max_obj_tol;
#[cfg(not(target_arch = "wasm32"))]
let start_instant = Instant::now();
for it in 0..=self.iterations {
// Now, enable the trajectory STM for this state so we can apply the correction
xi.enable_stm();
// Full propagation for a half period duration is slightly more precise than a step by step one with multiplications in between.
let xf = self
.prop
.with(xi, almanac.clone())
.until_epoch(achievement_epoch)
.context(PropSnafu)?;
// Check linearization
if !are_eigenvalues_stable(xf.stm().unwrap().complex_eigenvalues()) {
warn!(
"STM linearization assumption is wrong for a time step of {}",
achievement_epoch - correction_epoch
);
}
let xf_dual_obj_frame = match &self.objective_frame {
Some(frame) => {
let orbit_obj_frame = almanac
.transform_to(xf.orbit, *frame, None)
.context(AstroAlmanacSnafu)
.context(AstroSnafu)?;
OrbitDual::from(orbit_obj_frame)
}
None => OrbitDual::from(xf.orbit),
};
// Build the error vector
let mut err_vector = SVector::<f64, O>::zeros();
let mut converged = true;
// Build the B-Plane once, if needed, and always in the objective frame
let b_plane = if is_bplane_tgt {
Some(BPlane::from_dual(xf_dual_obj_frame).context(AstroSnafu)?)
} else {
None
};
// Build debugging information
let mut objmsg = Vec::new();
// The Jacobian includes the sensitivity of each objective with respect to each variable for the whole trajectory.
// As such, it includes the STM of that variable for the whole propagation arc.
let mut jac = DMatrix::from_element(self.objectives.len(), self.variables.len(), 0.0);
for (i, obj) in self.objectives.iter().enumerate() {
let xf_partial = if obj.parameter.is_b_plane() {
match obj.parameter {
StateParameter::BdotR => b_plane.unwrap().b_r,
StateParameter::BdotT => b_plane.unwrap().b_t,
StateParameter::BLTOF => b_plane.unwrap().ltof_s,
_ => unreachable!(),
}
} else {
xf_dual_obj_frame
.partial_for(obj.parameter)
.context(AstroSnafu)?
};
let achieved = xf_partial.real();
let (ok, param_err) = obj.assess_value(achieved);
if !ok {
converged = false;
}
err_vector[i] = param_err;
objmsg.push(format!(
"\t{:?}: achieved = {:>width$.prec$}\t desired = {:>width$.prec$}\t scaled error = {:>width$.prec$}",
obj.parameter,
achieved,
obj.desired_value,
param_err, width=width, prec=max_obj_tol
));
// Build the Jacobian with the partials of the objectives with respect to all of the final state parameters
// We localize the problem in the STM.
// TODO: VNC (how?!)
let mut partial_vec = DMatrix::from_element(1, 6, 0.0);
for (i, val) in [
xf_partial.wtr_x(),
xf_partial.wtr_y(),
xf_partial.wtr_z(),
xf_partial.wtr_vx(),
xf_partial.wtr_vy(),
xf_partial.wtr_vz(),
]
.iter()
.enumerate()
{
partial_vec[(0, i)] = *val;
}
for (j, var) in self.variables.iter().enumerate() {
// Grab the STM first.
let sc_stm = xf.stm().unwrap();
let stm = sc_stm.fixed_view::<6, 6>(0, 0);
let idx = var.component.vec_index();
// Compute the partial of the objective over all components wrt to all of the components in the STM of the control variable.
let rslt = &partial_vec * stm.fixed_columns::<1>(idx);
jac[(i, j)] = rslt[(0, 0)];
}
}
if converged {
#[cfg(not(target_arch = "wasm32"))]
let conv_dur = Instant::now() - start_instant;
#[cfg(target_arch = "wasm32")]
let conv_dur = Duration::ZERO.into();
let mut state = xi_start;
// Convert the total correction from VNC back to integration frame in case that's needed.
for (i, var) in self.variables.iter().enumerate() {
match var.component {
Vary::PositionX => state.orbit.radius_km.x += total_correction[i],
Vary::PositionY => state.orbit.radius_km.y += total_correction[i],
Vary::PositionZ => state.orbit.radius_km.z += total_correction[i],
Vary::VelocityX => state.orbit.velocity_km_s.x += total_correction[i],
Vary::VelocityY => state.orbit.velocity_km_s.y += total_correction[i],
Vary::VelocityZ => state.orbit.velocity_km_s.z += total_correction[i],
_ => {
return Err(TargetingError::UnsupportedVariable {
var: var.to_string(),
})
}
}
}
let sol = TargeterSolution {
corrected_state: state,
achieved_state: xf,
correction: total_correction,
computation_dur: conv_dur,
variables: self.variables,
achieved_errors: err_vector,
achieved_objectives: self.objectives,
iterations: it,
};
info!("Targeter -- CONVERGED in {} iterations", it);
for obj in &objmsg {
info!("{}", obj);
}
return Ok(sol);
}
// We haven't converged yet, so let's build the error vector
if (err_vector.norm() - prev_err_norm).abs() < 1e-10 {
return Err(TargetingError::CorrectionIneffective {
cur_val: err_vector.norm(),
prev_val: prev_err_norm,
action: "No change in objective errors",
});
}
prev_err_norm = err_vector.norm();
debug!("Jacobian {}", jac);
// Perform the pseudo-inverse if needed, else just inverse
let jac_inv = pseudo_inverse!(&jac)?;
debug!("Inverse Jacobian {}", jac_inv);
let mut delta = jac_inv * err_vector;
debug!("Error vector: {}\nRaw correction: {}", err_vector, delta);
// And finally apply it to the xi
for (i, var) in self.variables.iter().enumerate() {
// Choose the minimum step between the provided max step and the correction.
if delta[i].abs() > var.max_step {
delta[i] = var.max_step * delta[i].signum();
} else if delta[i] > var.max_value {
delta[i] = var.max_value;
} else if delta[i] < var.min_value {
delta[i] = var.min_value;
}
info!(
"Correction {:?} (element {}): {}",
var.component, i, delta[i]
);
match var.component {
Vary::PositionX => {
xi.orbit.radius_km.x += delta[i];
}
Vary::PositionY => {
xi.orbit.radius_km.y += delta[i];
}
Vary::PositionZ => {
xi.orbit.radius_km.z += delta[i];
}
Vary::VelocityX => {
xi.orbit.velocity_km_s.x += delta[i];
}
Vary::VelocityY => {
xi.orbit.velocity_km_s.y += delta[i];
}
Vary::VelocityZ => {
xi.orbit.velocity_km_s.z += delta[i];
}
_ => {
return Err(TargetingError::UnsupportedVariable {
var: var.to_string(),
});
}
}
}
total_correction += delta;
debug!("Total correction: {:e}", total_correction);
// Log progress
info!("Targeter -- Iteration #{} -- {}", it, achievement_epoch);
for obj in &objmsg {
info!("{}", obj);
}
}
Err(TargetingError::TooManyIterations)
}
}